研究生: |
倪毓均 Ni, Yu-Chun |
---|---|
論文名稱: |
機器學習之不同雜訊生成法的比較研究 The Comparison of Noise Generation Methods in Machine Learning |
指導教授: |
葉麗琴
Yeh, Li-Chin |
口試委員: |
江瑛貴
Jiang, Ing-Guey 陳賢修 Chen, Shyan-Shiou |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 計算與建模科學研究所 Institute of Computational and Modeling Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 機器學習 、系外行星 、凌星法 、數據分析 、克卜勒任務 |
外文關鍵詞: | machine learning, exoplanet, transit method, data analysis, kepler mission |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用機器學習方法,比較兩種不同的雜訊生成方式。雜訊生成方法分為,以Kepler Q1資料集中的光曲線作為原始雜訊的資料集,與以Pearson等(2019)[3] 的準週期系統模型生成的雜訊資料集。由每一種方法加上(Mandel & Agol, 2002)[2] 模擬理論光曲線的公式後,建構出幾種樣本數大小的訓練資料集,並使用交叉驗證訓練CNN模型。訓練完成後,分析由每一種方法建構出的資料所訓練出的模型性能,比較其差異。再選擇性能最好的,用來尋找Keper Q1資料集中可能有凌星現象之光曲線。計算理論光曲線與實際光曲線的誤差,以誤差最小的光曲線作為候選行星。在週期介於2天到4天之間,我們總共找到3個候選行星。
We used a machine learning method to compare two different kinds of noise generated light curves. The methods of generated light curves are including: one is original noise data generated from dataset light curves in Kepler Q1 dataset, and the other one is noise data generated from quasi-period system by Pearson et al. (2019)[3] After constructing several training datasets by using those two methods with theoretic light curve formula in Mandel & Agol (2002) [2], we trained our CNN model with K-fold Cross-Validation. We analyzed and test the performance of models, then we selected the best method to search possible transit light curves for Kepler Q1 dataset. We also calculate the error value between a theoretic and actual light curve, and choose the smallest one to be the exoplanet candidate. We totally found three exoplanet candidates with period in 2 to 4 days.
[1] 郭芷綺(2020)。以機器學習法搜尋系外行星的研究。國立清華大學碩士論文。
[2] Mandel, K., & Agol, E. (2002). Analytic light curves for planetary transit searches. The Astrophysical Journal, 580:L171–L175, 2002 December 1
[3] Pearson, K.A., Palafox, L., & Griffith, C.A. (2018). Searching for exoplanets using artificial intelligence. Monthly Notices of the Royal Astronomical Society, 474(1), 478-491.
[4] Yeh, Li-Chin & Jiang, Ing-Guey (2021). Searching for Possible Exoplanet Transits from BRITE Data through a Machine Learning Technique. Publications of the Astronomical Society of the Pacific, 133:014401 (12pp), 2021 January.