簡易檢索 / 詳目顯示

研究生: 王埄彬
Wang, Feng-Bin
論文名稱: 系統偏微分方程式模擬浮游生物競爭與共存之數學分析
Competition and Coexistence for Systems of Partial Differential Equations Modeling Phytoplankton Species with Storage
指導教授: 許世壁
Hsu,Sze-Bi
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 111
中文關鍵詞: 單調動態系統內部儲存上下解流動棲息地
外文關鍵詞: Monotone dynamical system, internal storage, upper-lower solution, flowing habitats
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文共分成三章:前二章以系統偏微分方程式 (systems of partial differential equations) 描述具內部儲存 (internal storage) 能力之水生浮游生物在非均勻環境中 (partially-mixed environment) 的生長與競爭。第三章探討在流動的棲息地中(如:細長之河流) 再加上一個現代水閘蓄水壩 (a hydraulic storage zone)會如何影響物種 (species) 的生長。
       對理論生態學而言,了解物種在變動的棲息地中如何競爭資源 (resources) 是一個具有挑戰性且又重要的問題。具儲存養分能力的物種是如何影響其在變動的環境中競爭呢? 就目前的理論而言,這完全是個未知的問題。最近 Grover 博士利用生態學上的一種手法 (a Lagrangian modeling approach) 針對環境中只有一種養分的情況下做了一些工作。 他做了很多的電腦模擬而給了下面的結論:
    在這樣的環境中只能有一個物種生存。然而他並無法寫下一個明確的數學式來描述這個推論。在前二章我們以系統偏微分方程式分別建立了兩個數學模型並對這個重要課題做了深入之探討。
    在第三章我們探討了一個非常實際的問題:在河流邊加上一個現代水閘蓄水壩會如何影響物種的生長? 物種在細長的河流中會有擴散 (diffusion) 情形發生;然而蓄水壩可視為均勻的環境 (well-mixed environment) 因此不會有擴散情形發生。我們以偏微分方程與常微分方程之聯立式建立了這個數學模型。
    本篇論文用到的數學工具如下:單調的動態系統 (Monotone dynamical system)、分歧理論(Theory of bifurcation)、度理論(Degree theory)、上下解(upper-lower solution)、最大值定理(Maximum principle)。


    This dissertation consists of chapter 1-3. Chapter 1-2 treat of applications of the chemostat to model the coexistence and competition for species with internal storage in the partially-mixed environment, while Chapter 3 is concerned with species in flowing habitats with a hydraulic storage zone.
    The problem of understanding competition for resources in spatially variable habitats is a challenging and very significant one for theoretical ecology. The specific question of how storage of nutrient resources affects competition in spatially variable habitats is virtually unknown from a theoretical perspective. Recently Grover used a Lagrangian modeling approach to study the competition of phytoplankton for a single nutrient resource. Each competitor population is divided into many subpopulations that move through two model habitats with gradient in nutrient availability: an unstirred chemostat and a partially-mixed water column. By numerical simulations, he concludes that the competitive exclusion holds. However his mathematical model can not be formally formulated and his results are numerical, not analytic. In Chapter 1-2, we construct two systems of reaction-diffusion equations to describe the coexistence and competition for species with internal storage in an unstirred chemostat.
    In Chapter 3, we introduce more realistic spatial models – riverine reservoir with hydraulic “storage zones”. The flow reactor model has similar boundary flows as in the unstirred chemostat, but with advective transport in addition to diffusion. Motivated by considering habitats such as broad high-order rivers or riverine reservoirs constructed by damming a river, we introduce a modification of the flow reactor model. Storage zones were originally introduced in hydraulic models to accurately describe transport of nonreactive tracers. Here we introduce a storage zone model for phytoplankton growing both in the flowing zone and the storage zone and derive conditions for persistence of a single species and coexistence of two competing species.
    In this dissertation we used the following arguments: Monotone dynamical system, Theory of bifurcation, Degree theory, upper-lower solution, Maximum principle。

    Contents Chapter 1 Microbial Competition for a Single Nutrient with Internal Storage in an Unstirred Chemostat----------------1 1. Introduction and the Model----------------------------------------------------------------1 2. Single Population Growth and Extinction Results-------------------------------------6 3. The Competition Model------------------------------------------------------------------21 4. Simulations---------------------------------------------------------------------------------36 5. Discussion----------------------------------------------------------------------------------37 Chapter 2 Coexistence of Two Species Competing for a Single Nutrient with Internal Storage in an Unstirred Chemostat--41 1. The Model----------------------------------------------------------------------------------42 2. Preliminaries-------------------------------------------------------------------------------43 3. Steady State Solution for Single Population Model----------------------------------46 4. Steady State Solutions for the Two Species Model-----------------------------------57 5. Discussion----------------------------------------------------------------------------------66 Chapter 3 Competition and coexistence in flowing habitats with a hydraulic storage zone----------------------------------------70 1. Introduction--------------------------------------------------------------------------------70 2. The Model----------------------------------------------------------------------------------72 3. Single Population Model-----------------------------------------------------------------78 4. Coexistence--------------------------------------------------------------------------------96 5. Numerical work----------------------------------------------------------------------------99 6. Discussion--------------------------------------------------------------------------------103 References----------------------------------------------------------------------106

    [1] R. A. Armstorng and R. McGehee, Competitive exclusion, American Naturalist,
    115 (1980), pp. 151–170.
    [2] J. V. BAXLEY and S. B. ROBINSON, Coexistence in the unstirred chemostat, Appl.
    Math. Computation, 89 (1998), pp. 41–65.
    [3] K. E. BENCALA and R. A.WALTERS, Simulation of solute transport in a mountain
    pool-and-riffle stream: a transient storage model, Water Resour. Research, 19
    (1983), pp. 718–724.
    [4] S. C. CHAPRA, Surface Water-Quality Modeling, McGraw-Hill, N. Y., 1997.
    [5] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional
    Analysis, 8 (1971), pp. 321–340.
    [6] A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth
    dynamics of microalgae, J. Theoret. Biol., 84 (1980), pp. 189–203.
    [7] A. Cunningham and R. M. Nisbet, Transient and Oscillation in Continuous
    Culture, Mathematics in Microbiology, M. J. Bazin, ed. Academic ress, New York,
    1983.
    [8] J. G. D. G. Figueiredo, Strict monotonicity of eigenvalues and unique continuation,
    Commun. Part. Diff. Eq., 17 (1992), pp. 339– 346.
    [9] E. N. Dancer, On the indices of fixed points of mappings in cones and applications,
    J. Math. Anal. Appl., 91 (1983), pp. 131–151.
    [10] E. N. Dancer, On positive solutions of some pairs of differential equations, Trans.
    Am. Math. Soc., 284 (1984), pp. 729–743.
    [11] E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with
    diffusion i. general existence results, Nonlinear Anal., 254 (1995), pp. 337–357.
    106
    [12] M. Droop, Some thoughts on nutrient limitation in algae, J. Phycol., 9, pp. 264–272.
    [13] Y. Du and J. Shi, Some recent results on diffusive predator-prey models in spatially
    heterogeneous environment, nonlinear dynamics and evolution equations, fields institute
    communications, American Mathematical Society, 48 (2006), pp. 95– 135.
    [14] Y. Du and J. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey
    model, Trans. Am. Math. Soc., 359 (2007), pp. 4557– 4593.
    [15] J. P. Grover, Constant- and variable-yield models of population growth responses to
    environmental variability and implications for competition, J. Theoret. Biol., 158
    (1992), pp. 409–428.
    [16] J. P. Grover, Is storage an adaptation to spatial variation in resource availability?,
    The American Naturalist, (Accepted).
    [17] J. W. H. Nie and G. Wolkowicz, The effect of inhibitor on the plasmid-bearing and
    plasmid-free model in the unstirred chemostat, SIAM J. Appl. Math., 38 (2007),
    pp. 1860–1885.
    [18] P. Hess, Periodic-parabolic Boundary Value Problem and Positivity, Pitman
    Res. Notes Math., 247, Longman Scientific and Technical, 1991.
    [19] M. W. Hirsch, The dynamical systems approach to differential equations, Bull.
    Amer. Math. Soc., 11 (1984), pp. 1–64.
    [20] S. B. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34
    (1978), pp. 760–763.
    [21] S. B. Hsu, Steady state of a system of p.d.e. modeling microbial ecology, SIAM J.
    Appl. Math, 14 (1983), pp. 1130–1138.
    [22] S. B. Hsu and T. H. Hsu, Competitive exclusion of microbial species for a singlelimited
    resource with internal storage, SIAM J. Appl. Math., (to appear).
    107
    [23] S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from
    competition in an unsirred chemostat, SIAM J. Appl. Math., 53 (1993), pp. 1026–
    1044.
    [24] J. Huisman and F. J. Weissing, Light-limited growth and competition for light in wellmixed
    aquatic environments: an elementary model, Ecology, 75 (1994), pp. 507–520.
    [25] J. Jiang, On the global stability of cooperative systems, Bull London Math. Soc.,
    26 (1994), pp. 455–458.
    [26] J. Jiang, Sublinear discrete-time order-preserving dynamical systems, Math. Proc.
    Canb. Phil. Soc., 119 (1996), pp. 561–574.
    [27] J. Jiang and X. Zhao, Convergence in monotone and uniformly stable skew-product
    semiflows with application, J. reine angew. Math., 589 (2005), pp. 21–55.
    [28] H. K. Mischaikow, H. L. Smith, Asymptotically autonomous semiflows: chain recurrence
    and liapunov functions, Trans. A.M.S., 347 (1995), pp. 1669–1685.
    [29] J. Keener, Principles of Applied Mathematics, Addison-Wesley, Reading, MA,
    1987.
    [30] C. M. Kung and B. Baltzis, The growth of pure and simple microbial competitors in
    a moving distributed medium, Math. Biosci., 111 (1992), pp. 295–313.
    [31] E. Litchman, Competition and coexistence of phytoplankton under fluctuating light:
    experiments with two cyanobacteria, Aquatic Microbial Ecology, 31 (2003),
    pp. 241–248.
    [32] R. Martin and H. L. Smith, Abstract functional differential equations and reactiondiffusion
    systems, Trans. of A.M.S., 321 (1990), pp. 1–44.
    [33] R. Martin and H. L. Smith, Reaction-diffusion systems with time delays: monotonicity,
    invariance, comparison and convergence, J. reine angew. Math., 413 (1991),
    pp. 1–35.
    108
    [34] C. J. MARTINEZ and W. R. WISE, Analysis of constructed treatment wetland hydraulics
    with the transient storage model otis., Ecol. Engin., 20 (2003), pp. 211–222.
    [35] D. A. J. MARY Ballyk, LE Dung and H. L. Smith, Effects of random motility on
    microbial growth and competition in a flow reactor, SIAM J. Appl. Math., 59
    (1998), pp. 573–596.
    [36] F. M. M. Morel, Kinetics of nutrient uptake and growth in phytoplankton, J .Phycology,
    23 (1987), pp. 137–150.
    [37] H. Nie and J.Wu, A system of reaction-diffusion equations in the unstirred chemostat
    with an inhibitor, Internat. J. Bifur. Chaos, 16 (2006), pp. 989–1009.
    [38] J. A. J. M. O. Diekmann, The dynamics of physiologically structured populations,
    Lecture Notes in Biomathematics, vol. 68, Springer Verlag, 1986.
    [39] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press,
    NewYork, 1992.
    [40] A. Pazy, Semigroups of linear operators and application to partial differential
    equations, Springer-Verlag, 1983.
    [41] M. H. Protter and H. F.Weinberger, Maximum Principles in Differential Equations,
    Springer-Verlag, 1984.
    [42] C. S. REYNOLDS, otamoplankton: paradigms, paradoxes and prognoses, in
    Algae and the Aquatic Environment, F. E. Round, ed., Biopress, Bristol, UK,
    1990.
    [43] W. Ruan and W. Feng, On the fixed point index and multiple steady-state solutions
    of reaction-diffusion systems, Differential Integral Equations, 8 (1995), pp. 371–
    392.
    109
    [44] S. H. S. B. Hsu and P.Waltman, Mathematical theoy for single nutrient competition in
    continuous cultures of microorganisms, SIAM J. Appl. Math., 32 (1977), pp. 366–
    383.
    [45] H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966.
    [46] J. Shi, Persistence and bifurcation of degenerate solutions, Jour. Funct. Anal., 169
    (1999), pp. 494–531.
    [47] H. L. Smith, Cooperative systems of differential equations with concave nonlinearities,
    Nonlin. Anal. TMA, 10 (1986), pp. 1037–1052.
    [48] H. L. Smith, Monotone Dynamical Systems:An Introduction to the Theory
    of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American
    Mathematical Society Providence, RI, 1995.
    [49] H. L. Smith and P. E. Waltman, Competition for a single limiting resouce in continuous
    culture: the variable-yield model, SIAM J. Appl. Math., 34 (1994), pp. 1113–
    1131.
    [50] H. L. Smith and P. E.Waltman, The Theory of the Chemostat, Cambridge Univ.
    Press, 1995.
    [51] R. W. Sterner and J. J. Elser, Ecological stoichiometry:the biology of elements
    from molecules to the biosphere, Princeton University Press, Princeton, New
    Jersey USA, 2002.
    [52] P. Takac, Convergence to equilibrium on invariant d-hypersurfaces for strongly increasing
    discrete-time semigroups, J. Math. Anal. Appl., 148 (1990), pp. 223–244.
    [53] T. F. Thingstad, Utilization of n, p, and organic c by heterotrophic bacteria. i. outline
    of a chemostat theory with a consistent concept of “maintenance” metabolism,
    Marine Ecology Progress Series, 35 (1987), pp. 99–109.
    110
    [54] D. Tilman, Resource Competition and Community Structure, Princeton University
    Press, Princeton, NJ, 1982.
    [55] M. X.Wang, Nonlinear Parabolic Equations, Science Press, Beijing (in Chinese),
    1993.
    [56] J. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,
    Nonlinear Anal., 39 (2001), pp. 817–835.
    [57] J. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two
    resources in the unstirred chemostat, J.Differential Equations, 172 (2001), pp. 300
    –332.
    [58] Q. Ye and Z. Li, Introduction to Reaction-Diffusion Equations, Science Press,
    Beijing, 1990.
    [59] X. Zhao, Global attractivity and stability in some monotone discrete dynamical systems,
    Bull. Austral. Math. Soc., 53 (1996), pp. 305–324.
    [60] S. Zheng and J. Liu, Coexistence solutions for a reaction-diffusion system of unstirred
    chemostat model, Appl. Math. Comput., 145 (2003), pp. 579–590.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE