簡易檢索 / 詳目顯示

研究生: 陳昱為
Chen, Yu-Wei
論文名稱: 茚並茚客體材料之設計與合成及深藍色螢光有機電致元件之應用
Design and Synthesis of Dihydroindeno[2,1-a]indene Derivatives as Deep-Blue Guest Materials and Their Applications in Organic Light Emitting Diodes
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 周鶴修
Chou, Ho-Hsiu
林渝亞
Lin, Yu-Ya
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 226
中文關鍵詞: 有機發光二極體深藍光客體材料剛性結構三重態-三重態淬熄
外文關鍵詞: Organic Light Emitting Diodes, deep-blue dopant material, rigid structure, triplet-triplet annihilation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們選用茚並茚(Dihydroindeno[2,1-a]indene)作為主體架構開發深藍色螢光客體材料,因其具有以下優點:(1)具有高螢光量子效率;(2)本身的剛性結構可提升材料的熱穩定性;(3)共軛鏈長度短可經由簡單的官能基修飾達到深藍光。我們設計合成出四種四苯基茚並茚(4PhDI)客體材料(圖1),分別引入拉電子基團與推電子基團修飾,期望增加載子傳遞的平衡性,且進一步比較不同官能基性質對效率的影響。此一系列客體材料的熱裂解溫度皆大於400 oC,且於350 oC之前也未觀察到玻璃轉化溫度,證實茚並茚結構確實為材料帶來良好的熱穩定性。將此一系列客體材料摻雜於主體材料DMPPP後,以4PhDI-2CN為客體材料的元件擁有最佳的效率表現,其最大外部量子效率、發光效率分別為10.0%、7.9 cd/A,CIEx,y座標可達(0.15, 0.08),且於高亮度下幾乎未出現效率滾降(roll-off)的現象,與近年來極飽和深藍光(Ultra-deep blue)的文獻相比其效率表現相當優異,由暫態電激發光實驗中發現此系列材料製成的元件有延遲螢光的現象,因此推測此系列材料能藉由三重態-三重態淬熄機制(Triplet-Triplet Annihilation, TTA)提升元件的效率,且於此系列材料引入拉電子基團有較好的TTA效應。
    接著我們為了降低材料於昇華純化時的操作溫度,將四苯基茚並茚中的苯環替換成甲基,降低材料的分子量減少分子間作用力,我們合成出四種四甲基茚並茚(4MeDI)客體材料探討(圖1),其中使用拉電子基團的4MeDI-3N與使用芳香環的4MeDI-Py光色相近,發現以4MeDI-3N為客體材料的元件有較佳的效率表現,其最大外部量子效率、發光效率分別為9.7%、12.6 cd/A,CIEx,y座標位於(0.14, 0.15),而此差異與材料的螢光量子效率(ΦPL)有關,且於暫態電激發光實驗中4MeDI-3N的延遲螢光強度與4MeDI-Py相比明顯較強,而有較好的TTA效應。


    Dihydroindeno[2,1-a]indene, a rigid structure containing a stilbene moiety, was selected as an emission core for the development of and study new materials that emit deep-blue light with high efficiency. Four fluorescent dopants based on the core 4PhDI derivatives (Figure 1), 4PhDI-2CN, 4PhDI-3N, 4PhDI-CN and 4PhDI-TPA have been synthesized. The materials were expected to facilitate the charge balance in the device by introducing electron-withdrawing group or electron-donating group. On the other hand, these compounds exhibit excellent thermal stability with decomposition temperature above 400 oC, and no glass transition temperature was observed in the range of 50 oC to 400 oC. Moreover, the device using DMPPP doped with 5% 4PhDI-2CN as an emitting layer shows a maximum external quantum efficiency (E.Q.E.) of 10.0% and the current efficiency (C.E.) of 7.9 cd/A with the CIE coordinates of (0.15, 0.08), which is close to (0.14, 0.08) in the National Television System Committee (NTSC) standard. Espeacially, the device exhibits low efficiency roll-off at the high luminance, and the outstanding performance of the device can be attributed to triplet-triplet annihilation (TTA) up-conversion mechanism.
    Further, we have synthesized a series of deep-blue dopants with the new core 4MeDI (Figure 1). By decreasing the molecular weight of these materials, the purification by sublimation could be conducted at the appropriate temperature. In the case of 4MeDI-3N and 4MeDI-Py, which display the same color, the device using 4MeDI-3N as a dopant exhibits better performance than that doped with 4MeDI-Py. This result is related to the difference of fluorescent quantum yield between them. And 4MeDI-3N shows higher intensity of delay fluorescence in the transient EL, which indicated more effective TTA effect.

    目錄..............................................................v 簡稱對照表.....................................................viii 圖目錄...........................................................ix 表目錄.........................................................xvii 第一章 緒論.......................................................2 第一節 有機發光二極體之演進歷程.....................................2 第二節 OLED元件結構與發光原理.......................................7 第三節 有機材料放光與能量傳遞機制...................................9 第四節 OLED元件之發光效率.........................................14 第五節 螢光元件效率提升機制........................................17 第六節 發光顏色...................................................20 參考文獻.........................................................21 第二章 茚並茚客體材料之設計與合成及深藍色螢光有機電致元件之應用.......24 前言與研究動機....................................................24 第一節 茚並茚客體材料的合成與鑑定..................................32 第二節 四苯基茚並茚客體材料物理性質之探討...........................42 2-1. 光物理性質探討...............................................42 2-2. 熱物理性質探討(TGA、DSC).....................................53 2-3. 最高填滿軌域(HOMO)-最低未填滿軌域(LUMO)之測量.................56 2-4. 四苯基茚並茚客體材料與主體材料之能量轉移探討...................60 第三節 四苯基茚並茚客體材料應用於藍色螢光元件之研究..................63 3-1. 元件結構之最佳化.............................................63 3-2. 藍色螢光元件之效率分析.......................................63 第四節 四甲基茚並茚客體材料物理性質之探討及元件探討.................107 4-1. 光物理性質探討..............................................107 4-2. 熱物理性質探討(TGA、DSC)....................................114 4-3. 最高填滿軌域(HOMO)-最低未填滿軌域(LUMO)之測量................116 4-4. 四甲基茚並茚客體材料與主體材料之能量轉移探討..................119 4-5. 元件效率與探討..............................................121 第五節 文獻比較..................................................128 第六節 元件壽命探討..............................................131 結論............................................................131 參考文獻........................................................138 實驗部分........................................................138 附錄一 測量原理、藥品、儀器與元件製作..............................167 附錄二 核磁共振光譜資料..........................................175 附錄三 X-ray單晶繞射結構分析.....................................218

    [1] Y. J. Tung, T. Ngo, M. Hack, J. Brown, N. Koide, Y. Nagara, Y. Kato, H. Ito, Dig. Tech. Pap. – Soc. Inf. Disp. Int. Symp. 2004, 35, 48.
    [2] R. C. Chiechi, R. J. Tseng, F. Marchioni, Y. Yang, F. Wudl, Adv. Mater. 2006, 18, 325.
    [3] Z. Q. Gao, B. X. Mi, C. H. Chen, K. W. Cheah, Y. K. Cheng, W. S. Wen, Appl. Phys. Lett. 2007, 90, 123506.
    [4] Y. J. Tung, T. Nago, M. Hack, J. Brown, N. Koide, Y. Nagara, Y. Kato, H. Ito, SID 2004 Technical Digest. 2004, 35, 48.
    [5] Y. Kijima, N. Asai, S. I. Tamura, Jpn. J. Appl. Phys., 1999, 38, 5274.
    [6] M. T. Lee, C. H. Liao, C. H. Tsai, C. H. Chen, Adv. Mater., 2005, 17, 2497.
    [7] H. Liu, G. Cheng, D. Hu, F. Shen, Y. Lv, G. Sun, B. Yang, P. Lu, Y. Ma, Adv. Funct. Mater. 2012, 22, 2830.
    [8] V. Sivasubramaniam, F. Brodkorb, S. Hanning, H. P. Loebl, V. van Elsbergen, H. Boerner, U. Scherf, M. Kreyenschmidt, J. Fluor. Chem. 2009, 130, 640.
    [9] M. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444.
    [10] W. Zeng, H. Y. Lai, W. K. Lee, M. Jiao, Y. J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K. T. Wong, C. C. Wu, C. Yang, Adv. Mater. 2018, 30, 1704961.
    [11] V. Jankus, C.-J. Chiang, F. Dias and A. P. Monkman, Adv. Mater. 2013, 25, 1455.
    [12] K. H. Kim, J. Y. Baek, C. W. Cheon, C. K. Moon, B. Sim, M. Y. Choi, J.-J. Kim, Y.-H. Kim, Chem. Commun. 2016, 52, 10956.
    [13] D. Di, L. Yang, J. M. Richter, L. Meraldi, R. M. Altamimi, A. Y. Alyamani, D. Credgington, K. P. Musselman, J. L. MacManus-Driscoll, R. H. Friend, Adv. Mater. 2017, 29, 1605987.
    [14] L. S. Cui, H. Nomura, Y. Geng, J. U. Kim, H. Nakanotani, C. Adachi, Angew. Chem. Int. Ed. 2016, 56, 1571.
    [15] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi, J. Am. Chem. Soc. 2012, 134, 14706.
    [16] P. Y. Chou, H. H. Chou, Y. H. Chen, T. H. Su, C. Y. Liao, H. W. Lin, W. C. Lin, H. Y. Yen, I. C. Chen, C. H. Cheng, Chem. Commun. 2014, 50, 6869-6871.
    [17] Y. H. Chen, C. C. Lin, M. J. Huang, Kevin Hung, Y. C. Wu, W. C. Lin, R.-W. C.-C., H. W. Lin, C. H. Cheng, Chem. Sci. 2016, 7, 4044.
    [18] M. Aydemir, G. Haykır, A. Battal, V. Jankus, S. K. Sugunan, F. B. Dias, H. Al-Attar, F. Türksoy, M. Tavasl., A. P. Monkman, Org. Electron. 2016, 30, 149.
    [19] X. Tang, Q. Bai, T. Shan, J. Li, Y. Gao, F. Liu, H. Liu, Q. Peng, B. Yang, F. Li, P. Lu, Adv. Funct. Mater. 2018, 28, 1705813.
    [20] Y. Li, F. Li, H. Zhang, Z. Xie, W. Xie, H. Xu, B. Li, F. Shen, L. Ye, M. Hanif, D. Ma, Y. Ma, Chem. Commun. 2007, 231.
    [21] J. Y. Hu, Y. J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, J. Kido, Adv. Funct. Mater. 2014, 24, 2064.
    [22] D. Di, L. Yang, J. M. Richter, L. Meraldi, R. M. Altamimi, A. Y. Alyamani, D. Credgington, K. P. Musselman, J. L. MacManus-Driscoll, R. H. Friend, Adv. Mater. 2017, 29, 1605987.
    [23] Xiaozhang Zhu, Chikahiko Mitsui, Hayato Tsuji, Eiichi Nakamura, J. AM. CHEM. SOC. 2009, 131, 13596.
    [24] Y. Wei, P. J. Liu, R. H. Lee, C. P. Chen, RSC Adv. 2015, 5, 7897.
    [25] Q. Yan, Y. Guo, A. Ichimura, H. Tsuji, E. Nakamura, J. Am. Chem. Soc. 2016, 138, 10897.
    [26] H. A. Hammond, D. E. DeMeyer, Jack L. R. Williams, J. Am. Chem. Soc. 1969, 91 (18), 5180.
    [27] Brian Wardle (2009). Principles and Applications of Photochemistry Hoboken: John Wiley & Sons, Ltd
    [28] X. Yuan, W. Zhang, L. H. Xie, J. Ma, W. Huang, W. Liu, J. Phys. Chem. B 2015, 119, 10316.
    [29] H. Inomata, K. Goushi, T. Masuko, T. Konno, T. Imai, H. Sasabe, J. J. Brown, C. Adachi, Chem. Mater. 2004, 16, 1285.
    [30] H. F. Chen, S. J. Yang, Z. H. Tsai, W. Y. Hung, T. C. Wang, K. T. Wong, J. Mater. Chem. 2009, 19, 8112.
    [31] J. Shi, C. W. Tang, C. H. Chen, U.S. Patent 5646948, 1997.
    [32] S. O. Jeon, Y. M. Jeon, J. W. Kim, C. W. Lee, M. S. Gong, Synth. Met. 2007, 157, 558.
    [33] T. L. Ye, S. Y. Shao, J. S. Chen, L. X. Wang, D. G. Ma, ACS applied materials & interfaces,2011, 3, 410-416.
    [34] H. Sasabe, J. Kido, Chem. Mater. 2011, 23, 621-630.
    [35] C. A. Parker, C. G. Hatchard, Trans. Faraday. Soc. 1961, 57, 1894.
    [36] C. A. Parker, C. G. Hatchard, Proc. Chem. Soc. 1962, 147.
    [37] V. Jankus, C. Winscom, A. P. Monkman, J. Chem. Phys. 2009, 130.
    [38] B. Pan, H. Huang, X. Yang, J. Jin, S. Zhuang, G. Mu, L. Wang, J. Mater. Chem. C 2014, 2, 7428.
    [39] P. F. Duan, N. Yanai, Y. Kurashige, N. Kimizuka, Angewandte Chemie 2015, 54, 7544.
    [40] D. Song, S. Zhao, Y. Luo, H. Aziz, Appl. Phys. Lett. 2010, 97, 243304.
    [41] K. Masui, H. Nakanotani, C. Adachi, Org Electron. 2013, 14, 2721.
    [42] C. Y. Chan, L. S. Cui, J. U. Kim,H. Nakanotani, C. Adachi, Adv. Funct. Mater. 2018, 28, 1706023.
    [43] S. H. Lin, F. I. Wu, H. Y. Tsai, P. Y. Chou, H. H. Chou, C. H. Cheng, R. S. Liu, J. Mater. Chem. 2011, 21, 8122.
    [44] Y. H. Chen, H. H. Chou, T. H. Su, P. Y. Chou, F. I. Wu, C. H. Cheng, Chem. Commun. 2011, 47, 8865.
    [45] H. H. Chou, Y. H. Chen, H. P. Hsu, W. H. Chang, Y. H. Chen, C. H. Cheng, Adv. Mater. 2012, 24, 5867.
    [46] Q. Zhang, J. Lee, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi, J. Am. Chem. Soc. 2012, 134, 14706.
    [47] Y. Lee, J. Kim, S. Kwon, C. K. Min, Y. Yi, J. W. Kim, B. Koo, M. P. Hong, Org. Electron. 2008, 9, 407.

    QR CODE