簡易檢索 / 詳目顯示

研究生: 詹詩敏
Chan, Jennifer
論文名稱: 半導體封裝廠之機台配置問題
Machine Allocation Problem of IC-Packaging Factory
指導教授: 林則孟
口試委員: 吳政鴻
陳文智
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 121
中文關鍵詞: 半導體封裝廠機台配置產品分配模擬最佳化基因演算法OCBA
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對半導體封裝廠進行中期之機台配置規劃。中期產能規劃分為兩個部分,一為規劃需求訂單分配到各產線之數量;二為在因應市場需求之變化下,每期必須調整各產線之機台數目,以避免後續生產時產能的浪費或是不足。由於各產線之機台數以及產品的分配為互相影響之因子,因此產生了一個在已知需求預測之情境下各產線之產品分配以及機台配置問題。
    本研究透過找一個較適當的產品需求預測分配與機台配置方案,來輔助半導體封裝業進行後續之接單生產決策。以一半導體封裝廠為例探討半導體封裝廠之黏晶粒、銲線、封模三瓶頸站,並考量到顧客需求、機台產能、產線空間、生產作業時間、以及產品指定機台特性等去以一模擬最佳化之方法找尋使得規劃期間內淨毛利最大之產品分配以及機台配置方案。由於本問題之模擬模式複雜,且當考量產品數、機台數、產線數多時,在實務問題中會面臨到方案數過多而求解困難之現象,因此本研究利用基因演算法進行最佳解的搜尋,並且利用一OCBA( Optimal Computing Budget Allocation) 方法去控制模擬之計算資源,同時估計找到之方案為最佳方案之機率。透過以上方法,本研究能夠利用模擬最佳化給予產業一個有效的產品分配與機台配置參考基準。


    圖目錄 V 表目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究範圍 4 1.4 研究步驟與方法 4 第二章 半導體封裝業之機台配置問題特性 7 2.1 半導體封裝業生產管理特性 7 2.2 半導體封裝業之機台配置規劃 11 2.3 現行機台配置規劃流程 13 2.4 半導體封裝廠現有機台配置規劃範例 15 2.5 現行企業機台配置規劃面臨問題 21 2.6 改善方向 23 2.7 問題定義 24 第三章 文獻回顧 28 3.1 產能規劃-機台配置問題 28 3.1.1 半導體封裝業產能規劃之層級 28 3.1.2 機台配置規劃之文獻 31 3.1.3 機台配置問題之分類 33 3.2 模擬最佳化 34 3.2.1 OCBA(Optimal Computing Budget Allocation) 35 3.2.2 基因演算法 37 第四章 機台配置方法論 41 4.1 機台配置問題 41 4.1.1 機台配置問題模式說明 41 4.1.2 機台配置問題模擬模式 43 4.2 基因演算法與OCBA方法論 45 4.2.1 基因演算法與OCBA—意義 45 4.2.2 基因演算法與OCBA程序 50 4.2.2.1 編碼(Encoding) 51 4.2.2.2 初始解產生(Initialization) 54 4.2.2.3 績效評估(Evaluation) 56 4.2.2.4 選擇(Selection) 60 4.2.2.5 交配(Crossover) 60 4.2.2.6 突變(Mutation) 63 4.2.2.7 族群取代(Replacement) 65 4.2.2.8 停止條件(Stopping criteria) 65 4.2.3 模式改良 65 4.3 機台配置問題範例 68 4.3.1 範例情境說明 68 4.3.2 模擬模式建構 72 4.3.2.1 模擬模式建構目的 72 4.3.2.2 範圍與細緻度 72 4.3.2.3 模擬模式建構 73 4.3.2.4 模式驗證與確認 74 4.3.3 範例實驗結果與分析 76 4.3.3.1 實驗說明 76 4.3.3.2 確定型需求下之實驗結果 79 4.3.3.3 隨機型需求下之實驗結果 81 4.3.3.4 實驗參數分析 85 第五章 實例驗證與分析 91 5.1 案例公司生產環境 91 5.1.1 輸入參數設定 92 5.2 模擬模式構建 95 5.2.1 模擬模式建構目的 95 5.2.2 模擬模式範圍與細緻度 95 5.2.2.1 模擬模式構建 96 5.3 案例求解與分析 98 5.3.1 確定型需求下之實驗結果 100 5.3.2 隨機型需求下之實驗結果 105 5.3.3 實驗結果 111 5.3.4 實驗小結 115 第六章 結論與建議 116 6.1 結論 116 6.2 建議 117 參考文獻 119

    1. 紀明佳,”半導體封裝廠生產效率之評估分析”,國立高雄第一科技大學運籌管理研究所,碩士論文,2008。
    2. 梁宇帆,”薄膜電晶體陣列廠機台配置機制之構建”,國立交通大學工業工程與管理學系,碩士論文,2006。
    3. 熊雅意,”晶圓代工廠考慮週期時間限制之機台規劃研究”,國立交通大學工業工程與管理學系,博士論文,2004。
    4. 蔡杭助,”結合基因演算法與離散事件模擬求解即時性平行機台之派工規劃問題”,國立成功大學製造工程研究所,博士論文2002。
    5. 鄭書豪,”CONWIP生產管制架構於IC封裝產業之應用”,國立清華大學工業工程與工程管理學系,碩士論文,1998。
    6. Bretthauer, K. M., “Capacity planning in networks of queues with manufacturing applications.”, Mathematical Computer Modeling Vol. 12, No. 12, pp. 35-46, 1995.
    7. Carson, J. S., “AutoStat Output Statistical Analysis for AutoMod Users”, Proceedings of the 1996 Winter Simulation Conference, 492-499, 1996.
    8. Chen, Chun-Hung, Lin, Jianwu,”Simulation Budget Allocation for Further Enhancing the Efficiency of Ordinal Optimization.”, Discrete Event Dynamic Systems: Theory and Applications, 10, 251–270, 2000.
    9. Connors , D. P. and Feigin, G. E. and Yao, D. D.,” A queueing network model for semiconductor manufacturing.”, IEEE Transaction on Semiconductor Manufacturing, Vol. 9, No. 3, pp. 412-427, 1996.
    10. Dudewicz, E. J. and Dalal, S. R. “Allocation of Observations in Ranking and Selection with Unequal Variances”, Sankhya, B37: pp. 28-78, 1975.
    11. Gen, M. and Cheng, R., “Genetic Algorithms and Engineering Optimization.”, John Wiley & Sons, New York, 2002.
    12. Grewal, N. S., Bruska, A. C., Wulf, T. M., and Robinson, J. K.,” Integrating Targeted Cycle-Time Reduction into the Capital Planning Process.”, Proceeding of the 1998 Winter Simulation Conference, pp.1005-1010, 1998.
    13. Henderson, S.G. and Nelson, B.L. (Eds.), “Handbook in OR & MS”, Vol. 13Copyright,2006.
    14. Holland, J., “Adaptation in Natural and Artificial Systems”, University of Michigan Press, 1975.
    15. Kenneth A. de Jong, William M. Spears and Diana F. Gordon, “Using Genetic Algorithms for Concept Learning”, Machine Learning, 13,161-188, 1993.
    16. Liu, J., Yang, F., Wan, H., Fowler , John W., “Capacity planning through queueing anaylsis and simulation-based statistical methods:a case study for semiconductor wafer fabs.”, International Journal of Production Research 10.1080/00207543.2010.501828,2010.
    17. Kocher, R., “Capacity Planning in the Face of Production-Mix Uncertainty,” Proceeding International Symposium on Semiconductor Manufacturing, Santa Clara, California, U.S.A.,pp.73-76,1999.
    18. Lee , Loo-Hay, Chew, Ek-Peng, Teng, Suyan, Chen, Yankai, ” Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem.”, European Journal of Operational Research 189 (2008) 476–491
    19. Leyuan Shi, “Sigurdur’Olafsson. Nested Partitions Method Theory and Applications.”, Springer Science+Business Media, LLC, 2009
    20. Rinott, Y. “On Two-stage Selection Procedures and Related Probability Inequalities”, Communications in Statistics A7, pp. 799-811, 1978.
    21. Umi Kalsom Yusof, Safaai Deris,”Optimizing Machine Utilization in Semiconductor Assembly Industry using Constraint-Chromosome Genetic Algorithm.”,IEEE,978-1-4244-6719-7/10,2010.
    22. Vollman, T., Berry, W., Whybark, D., Jacobs, F, “Manufacturing Planning and Control for Supply Chain Management.”, McGraw-Hill, 5th international edition, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE