簡易檢索 / 詳目顯示

研究生: 朱嘉儀
Chia-Yi Chu
論文名稱: 新型SOG微加速度計之設計與機電系統整合探討
On the Electromechanical System Integration and Design of a Novel SOG Accelerometer
指導教授: 方維倫
Weileun Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 68
中文關鍵詞: SOG加速度計
外文關鍵詞: SOG, Accelerometer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微機電系統(Micro-electro-mechanical system)發展至今,很多元件都已臻於成熟並大量應用在我們日常生活所使用的電子系統當中。在設計的過程中,機械構件與電子介面的匹配整合是很重要的一環,不外乎利用複合的方式或是單塊式共晶片(on-chip)兩種方式來作連接。
    單塊式共晶片(on-chip)的方式固然整合性較高,但難度亦偏高,故本文利用SOG(Silicon On Glass)矽晶片搭配上簡易的製程製造出一微型電容感測式加速度計元件,輔以複合式的機電整合方式來完成加速度計感測系統。本文的成果不但提供了一個完整的設計流程,並藉由電性上的量測來探討在機電整合介面上的問題。期望此一架構能對未來類似的延伸應用提供一個完善的參考依據。


    Many devices of MEMS(Micro-electro-mechanical system)have maturely developed and applied with electrical systems in our daily life. During designing, the integration of interface of the mechanical devices and electrical circuits is very important. The hybrid-connected integration and monolithic single chip integration are the most two common solutions.
    With the high integration of monolithic system, it is more difficult to be achieved than hybrid-connected configuration. This study demonstrates an capacitive accelerometer sensor system based on hybrid integration interface consists of mechanical structure realized on SOG(Silicon On Glass)silicon substrate and capacitive sensing integrated circuits. It also proposes a complete design flow of MEMS device and analysis of interface between mechanical and electrical parts.

    目錄 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 系統整合 2 1-2-2 製程設計 3 1-2-3 感測機制 3 1-3 研究動機與目標 4 第二章 設計與分析 11 2-1 原理介紹 11 2-1-1機械動態系統 11 2-1-2電容感測介面 13 2-1-3系統整合 14 2-2 加速度計設計分析 15 2-2-1 結構動態設計考量 16 2-2-2 電容感測介面設計考量 17 2-3 模擬驗證 18 第三章 製程與參數 32 3-1 製程步驟 32 3-2製程結果與討論 36 第四章 量測與結果 45 4-1 機械特性測試 45 4-2加速度計自我診斷動態測試 46 4-3加速度計振動器動態測試 48 4-4結果與討論 49 第五章 總結與未來工作 63 參考文獻 66

    [1] F. Goodenough, “Airbags boom when IC accelerometer sees 50g”, Electronic Design, 39, No. 15, Aug., 1991.
    [2] K. H.-L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart and R. G. Marcheselli, “An integrated force-balanced capacitive accele-
    rometer for low-g applications”, Sensors and Actuators A, Vol.54, pp472-476, 1996.
    [3] http://www.bosch.com/en/start/index.asp
    [4] U. Wagner, R. Muller-Fiedler, J. Bagdahn, B. Micheal and O. Paul, “Mechanical reliability of epipoly MEMS structures under shock load”, Transducers’03, Boston, MA, June, 2003, pp 175-178
    [5] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma and M. Esashi, “Three-axis capacitive accelerometer with uniform axial sensitivities”, Journal of Micromechanics and Microengineering, Vol.6, pp 431-435, 1996.
    [6] H. Xie and G. K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing”, IEEE MEMS’2000, Miyazaki, Japan, Jan. 2000, pp 496-501.
    [7] Y. Matsumoto, M. Nishimura, M. Matsuura and M. Ishida, “Three-axis SOI capacitive accelerometer with PLL C-V converter”, Sensors and Actuators A, Vol.75, pp 77-85, 1999.
    [8] H. Seidel, H. Riedel, R. Kolbeck, G. Muck, W. Kupke and M. KoMiger, “Capacitive silicon accelerometer with highly symmetrical design”, Sensors and Actuators A, Vol.21-23, pp 312-315, 1990.
    [9] L. C. Spangler and C. J. Kemp, “ISAAC: integrate silicon automotive accelerometer”, Sensors and Actuators A, Vol.54, pp 523-529, 1996.
    [10] G. Li and A. A. Tseng, “Low Stress Packaging of a Micromachined Accelerometer”, IEEE Transactions on Electronics Packaging Manufacturing, Vol.24, No.1, pp 18-25, 2001.
    [11] E. Belloy, A. Sayah and M. A. M. Gijs, “Micromachining of glass inertial sensors”, Journal of Microelectromechanical Systems, Vol.11, No.1, pp 85-90, 2002.
    [12] K. Ishihara, C.-F. Yung, A. A. Ayon and M. A. Schmidt, “An inertial sensor technology using DRIE and wafer bonding with interconnecting capability”, Journal of Microelectromechanical Systems, Vol.8, No.4, pp 403-408, 1999.
    [13] J. C. Lotters, W. Olthuis, P. H. Veltink and P. Bergveld, “Theory, technology and assembly of a highly symmetrical capacitive triaxial accelerometer”, IEEE MEMS’1997, Nagoya, Japan, Jan. 97, pp 31-36.
    [14] L. M. Roylance and J. B. Angell, “A batch-fabricated silicon accelerometer”, IEEE Transactions on Electronic Devices, ED-26, pp 1911-1917, 1979.
    [15] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L. Zhang, N. I. Maluf and T. W. Kenny, “A high–performance planar piezoresistive accelerometer”, Journal of Microelectromechanical Systems, Vol.9, No.1, pp 58-66, 2000.
    [16] B. Puers and W. Sansen, “A new uniaxial accelerometer in silicon based on the piezojunction effect”, IEEE Transactions on Electronic Devices, ED-35, pp 764-770, 1988.
    [17] P. Scheeper, J. O. Gulloy and M. Kofoed, “A piezoelectric triaxial accelerometer”, Journal of Micromechanics and Microengineering, Vol.6, pp 131-133, 1996.
    [18] T. Storgaard-Larsen, S. Bouwstra and O. Leistiko, “Opto-
    mechanical accelerometer based on strain sensing by a bragg grating in a planar waveguide”, Sensors and Actuators A, Vol.52, pp 25-32, 1996.
    [19] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution”, Journal of Microelectromechanical Systems, Vol.7, No.2, pp 235-244, 1998.
    [20] S.S. Rao Mechanical Vibrations.4th edition , Pearson Education
    International.
    [21] N. Wongkomet, D. A. Horsley and B. E. Boser, “A Capacitive Position Sensing Circuit for Microactuators”, Proceedings Eurosensors XII, N. M. White (editor), Southampton, UK, pp. 399-402. September 1998.
    [22] J. Chae, H. Kulah, A. Salian, and K. Najafi, "A High Sensitivity Silicon-on-Glass Lateral Micro-g Micro-accelerometer", The Proceedings of the 3rd International Conference on Integrated Nano/Microtechnology for Space Applications (Nanospace 2000), Houston, TX, January 2000.
    [23] Cenk Acar and Andrei M. Shkel, "Structurally decoupled micromachined gyroscopes with post-release capacitance enhancement", Journal of Micromechanics and Microengineering, Vol.15, pp.1092-1101, 2005.
    [24] W. A. Johason, L. K. Warne, “Electrophysics og micromechanical comb actuators”, Journal of Microelectromechanical systems, Vol.4, No.1, pp 49-59, 1995.
    [25] J.-L. A. Yeh, C.-Y. Hui and N. C. Tien, “Electrostatic model for an asymmetric combdrive”, Journal of Microelectromechanical systems, Vol.9, No.1, pp 126-135, 2000.
    [26] H. Hu and W. Fang, “A novel accelerometer on (111) substrate with differential electrode”, Proceedings of SPIE, Device and process technologies for MEMS and microelectronics II, 4592, Adelaide, Australia, Dec. 2001, pp 436-442.
    [27] http://www.coventor.com
    [28] F. Laermer and A. Schilp of Robert Bosch GmbH, “Method of Anisotropically Etching Silicon”, US-Patent No.5501893.
    [29] http://www.etec-inc.com/products/MEMS_Motion_Analyzer_Data
    _Sheet_7-01.pdf
    [30] http://www.microsensors.com/ucr.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE