簡易檢索 / 詳目顯示

研究生: 張瑞育
Chang, Rui-Yu
論文名稱: 高效能預編碼矩陣設計用於中繼站協助之多用戶下行網路
Energy-Efficient Precoding Matrix Design for Relay-Aided Multiuser Downlink Networks
指導教授: 祈忠勇
Chi, Chong-Yung
口試委員: 李大嵩
Ta-Sung Lee
吳仁銘
Jen-Ming Wu
洪樂文
Yao-Win Hong
祈忠勇
Chong-Yung Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 30
中文關鍵詞: 凸優化能量效率波束成型設計
外文關鍵詞: Convex optimization, Energy efficiency, Beamforming designs
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文針對中繼站協助之多用戶多輸入單輸出(multiple-input single-output, MISO)下行(downlink)無線通訊系統,考慮高效能(energy-efficient)的預編碼矩陣(precoding matrix)設計。此問題一般是非凸(nonconvex)且複雜的問題,目前已經受到廣泛的關注,不過並沒有強而有效的演算法被提出。在此篇論文中,考慮分別在單天線用戶的服務品質(Quality of Service, QoS),以及在基地台(base station)和中繼站(relay station)的傳輸功率限制下,設計多根天線的基地台和中繼站之預編碼矩陣以使傳輸的能量效率(energy efficiency) (此傳輸能量效率定義為系統傳輸速率總和對消耗總功率之比值)最大化。有鑑於此最佳化問題是一個非凸分式問題(nonconvex fractional programming),我們提出了一個可以保證收斂的連續丁克爾巴赫凸近似(successive Dinkelbach and convex approximation, SDCA )演算法用以處理此問題。模擬結果驗證所提出的SDCA演算法之效能,以及當基地台和中繼站天線個數增加時(亦即,更多的空間自由度),SDCA會顯著地改善傳輸能量效率。最後,我們總結此篇論文。


    This thesis considers the energy-efficient precoding matrix design for a relay-aided multiuser
    downlink multiple-input single-output (MISO) wireless system. This problem is nonconvex
    and complicated in general and has drawn extensive attention, but few effective and efficient
    algorithms have been reported. In this thesis, the precoders of the base station (BS) and
    the relay station (RS) both equipped with multiple antennas are designed to maximize the
    transmit energy efficiency (EE), defined as the ratio between the system sum rate and the
    total power consumption, under respective quality-of-service (QoS) constraints of singleantenna
    users and the transmit power constraints on the BS and the RS. In view of the fact
    that the associated optimization problem is a nonconvex fractional programming, a successive
    Dinkelbach and convex approximation (SDCA) algorithm with convergence guaranteed is
    proposed to cope with the problem. Some simulation results are provided to demonstrate
    the effectiveness of the proposed SDCA algorithm, and significant EE improvement as the
    number of antennas at the BS and the RS increases (i.e., more spatial degrees of freedom).
    Finally, some conclusions are provided.

    Contents Chinese Abstract Abstract Acknowledgments Contents List of Figures Notations vii 1 Introduction 1.1 Background 1.2 Literature Review 1.3 Contributions 2 Signal Model and Problem Statement 2.1 Signal Model 2.2 Problem Statement 3 Proposed Successive Dinkelbach and Convex Approximation (SDCA) Al-gorithm 3.1 Dinkelbach’s Algorithm Reveiw 3.2 Proposed Successive Dinkelbach and Convex Approximation (SDCA) Algorithm 3.3 Initialization of the SDCA Algorithm 4 Simulation Results and Discussions 5 Conclusion and Future Directions Bibliography

    [1] H. Zhang, A. Gladisch, M. Pickavet, Z. Tao, and W. Mohr, “Special issue on energy
    efficiency in communications,” IEEE Commun. Mag., vol. 48, no. 11, pp. 48–49, Nov.
    2010.
    [2] S. Betz and H. V. Poor, “Energy efficient communications in CDMA networks: A game
    theoretic analysis considering operating costs,” IEEE Trans. Signal Process., vol. 56,
    no. 10, pp. 5181–5190, Oct. 2008.
    [3] G. Miao, N. Himayat, G. Y. Li, and S. Talwar, “Distributed interferenceaware energyefficient
    power optimization,” IEEE Trans. Wireless Commun., vol. 10, no. 4, pp. 1323–
    1333, Apr. 2011.
    [4] C. Isheden and G. P. Fettweis, “Energy-efficient multi-carrier link adaptation with sum
    rate-dependent circuit power,” in Proc. IEEE GLOBECOM, Miami, FL, Dec. 6-10,
    2010, pp. 1–6.
    [5] Z. Chong and E. A. Jorswieck, “Energy-efficient power control for MIMO time-varying
    channels,” in Proc. IEEE GreenCom, New York, NY, Sept. 26-29, 2011, pp. 92–97.
    [6] E.-V. Belmega and S. Lasaulce, “Energy-efficient precoding for multiple-antenna terminals,”
    IEEE Trans. Signal Process., vol. 59, no. 1, pp. 329–340, Jan. 2011.
    [7] M. Le Treust and S. Lasaulce, “A repeated game formulation of energy efficient decentralized
    power control,” IEEE Trans. Wireless Commun., vol. 9, no. 9, pp. 2860–2869,
    Sept. 2010.
    [8] J. Cho and Z. J. Haas, “On the throughput enhancement of the downstream channel in
    cellular radio networks through multihop relaying,” IEEE J. Sel. Areas Commun., vol.
    22, no. 7, pp. 1206–1219, Sept. 2004.
    [9] S. Zhou, A. J. Goldsmith, and Z. Niu, “On optimal relay placement and sleep control
    to improve energy efficiency in cellular networks,” in IEEE ICC, Kyoto, June 2011, pp.
    1–6.
    [10] A. Zappone, Z. Chong, E. A. Jorswieck, and S. Buzzi, “Energy-aware competitive power
    control in relay-assisted interference wireless networks,” IEEE Trans. Wireless Com-
    mun., vol. 12, no. 4, pp. 1860–1871, Apr. 2013.
    [11] A. Zappone, P. Cao, and E. A. Jorswieck, “Energy efficiency optimization in relayassisted
    MIMO systems with perfect and statistical CSI,” IEEE Trans. Signal Process.,
    vol. 62, no. 2, pp. 443–457, Jan. 2014.
    [12] C. Li, F. Sun, J. M. Cioffi, and L. Yang, “Energy efficient MIMO relay transmissions
    via joint power allocations,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 7,
    pp. 531–535, Jul. 2014.
    [13] C. Li, H. J. Yang, F. Sun, J. M. Cioffi, and L. Yang, “Approximate closed-form energy
    efficient PA for MIMO relaying systems in the high SNR regime,” IEEE Commun. Lett.,
    vol. 18, no. 8, pp. 1367-1370, Aug. 2014.
    [14] X. Zhou, B. Bai, and W. Chen, “A low complexity energy efficiency maximization
    method for multiuser amplify-and-forward MIMO relay systems with a holistic power
    model,” in IEEE Commun. Lett. vol. 18, no. 8, pp. 1371–1374, Aug. 2014.
    [15] W. Dinkelbach, “On nonlinear fractional programming,” Manag. Sc., vol. 13, no. 7, pp.
    492–498, 1967.
    [16] D. Bertsekas, Nonlinear Programming. Nashua, NH, USA: Athena Scientific, 1999.
    [17] J. Xu, and L. Qiu, “Energy efficiency optimization for MIMO broadcast channels,”
    IEEE Trans. Wireless Commun., vol. 12, no. 2, pp. 690–701, Feb. 2013.
    [18] C. Hellings and W. Utschick, “Energy effiiency optimization in MIMO broadcast channels
    with fairness constraints,” in Proc. IEEE 14th Int. Workshop Signal Process. Adv.
    Wireless Commun. (SPAWC), Jun. 2013, pp. 594–598.
    [19] G. Miao, N. Himayat, and G. Y. Li, “Energy-efficient link adaptation in frequencyselective
    channels,” IEEE Trans. Wireless Commun., vol. 58, no. 2, pp. 545–554, Feb.
    2010.
    [20] W.-C. Li, T.-H. Chang, C. Lin, and C.-Y. Chi, “Coordinated beamforming for multiuser
    MISO interference channel under rate outage constraints,” IEEE Trans. Signal Process.,
    vol. 61, no. 5, pp. 1087–1103, 2013.
    [21] F. You, P. M. Castro, and I. E. Grossmann, “Dinkelbach’s algorithm as an efficient
    method to solve a class of MINLP models for large-scale cyclic scheduling problems,”
    Computers & Chemical Engineering, vol. 33, no. 11, pp. 1879–1889, 2009.
    [22] R. Zhang, C. C. Chai, and Y.-C. Liang, “Joint beamforming and power control for multiantenna
    relay broadcast channel with QoS constraints,” IEEE Trans. Signal Process.,
    vol. 57, no. 2, pp. 726–737, 2009.
    [23] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,
    version 1.21,” http://cvxr.com/cvx, Apr. 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE