研究生: |
劉宗興 Tsung-Shing Liu |
---|---|
論文名稱: |
核能電廠半導體輻射偵檢器之研究與應用 Study and Application of Semiconductor Radiation Detectors for Nuclear Power Plant |
指導教授: |
張廖貴術
Kuei-Shu Chang-Liao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 126 |
中文關鍵詞: | 金氧半場效電晶體 、電荷汲引電流 、輻射 、光電二極體 、太陽能電池元件 、界面陷阱電荷 、劑量率 、偵檢器 |
外文關鍵詞: | MOSFET, Charge Pumping Current, Radiation, Photodiode, Solar Cell Device, Interface Trapped Charge, Dose Rate, Detector |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來因半導體電子元件之製程的快速發展,以半導體元件為輻射偵檢器亦已陸續應用在輻射監測上,由於高輻射強度之輻射偵檢器價格是非常昂貴,且依賴國外進口;因此,本研究目的係找尋現成之商用半導體元件,研究各種元件電氣特性,開發為低廉之輻射偵檢器,並可應用在國內核能電廠運轉時之事故級高輻射強度之監測。
本論文可分為三部分說明,第一種研究為我們成功的研究及找尋到商用功率金氧半場效電晶體(MOSFET),利用其閘極氧化層與輻射作用效應產生陷阱電荷,量測界面電荷汲引電流(Interface Charge Pumping Current)之變化量,經驗證可當為高輻射劑量計,同時在高溫環境使用,亦不會隨時間而弱化消失(Fading Effect)。
第二種研究為脈衝式輻射量測,一般半導體輻射偵檢器,如PIN Photodiode是以其P-I-N結構經輻射作用產生電子電洞對,再經由電荷放大器形成可計測之脈衝,而我們利用功率金氧半場效電晶體之元件物理特性為偵檢器,以其源極到汲極之雙重擴散(Double Diffusion)半導體結構,存有n+/ p+/ n-/ n+共生元件(Parasitic device),類同P-I-N結構,在高強度輻射的量測研究,證明比PIN光電二極體元件更適用在高強度輻射的監測。
第三種研究為電流式輻射量測,並成功的找尋到太陽能電池元件(Solar Cell Device)為偵檢器,利用其PN二極體接面受輻射照射之效應,電子電洞對可直接跨越能帶障礙,於高強度輻射照射下,單位時間跨越能帶的電子電洞對多到足夠產生可計測之電流,測試之結果約可達5~8E-11 A/(rad /hr),且電流/輻射劑量率之對數讀值的反應線性度良好。我們亦研製電流放大器,結合成輻射監測器,經實際照射校驗測試,更驗證可應用在核能電廠運轉時之事故級高輻射強度之監測。
Recently, the semiconductor devices processing has been rapidly developed. The detectors using semiconductor devices have been used for radiation monitors. The radiation detector for high dose range is very expensive and needs export from abroad. Consequently, the purposes of this thesis are to find the radiation detectors using the commercial semiconductor devices and study electric characteristics of those devices. This article focuses on applications of the high range radiation monitoring during accident of nuclear power plant. Therefore, electric characteristics of the semiconductor devices were studied through the experiments for achieving cheaper radiation detectors and monitors.
This dissertation comprises three studies. It is successfully found in the first study that the Power Metal-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) devices can be used for the high range dosimeters. Due to the interface trap charges increased by radiation interaction, we can measure the change of pumping current in corresponding with interface charges induced by radiation exposure dose. We also find that the Power MOSFETs are suitable to be used in a high temperature and high radiation dose environment of the Nuclear Power Plant.
The second study is radiation measurement of pulse mode operation. Normally, PIN photodiode is used to be a pulse mode radiation detector by means of charges generation in its P-I-N structure under radiation interaction. We find that the Power MOSFET device exists a parasitic n+/ p+/ n-/ n+ device from the source to the drain, which is similar to the P-I-N structure. To be used in high radiation dose environment, we find that the Power MOSFET devices have more advantage than the PIN photodiodes.
The third study is radiation measurement of current mode operation. It is successfully found that the Solar Cell devices can be used for the high range radiation measurement. As the PN junction of the device is exposed by radiation, the electron-hole pairs are generated by energy deposited from gamma-rays and they are easy to escape from energy band. Thus, a large amount of electron-hole pairs generated by high radiation can produce a measurable current. The experimental result of current to exposure dose rate is 5~8E-11 A/(rad/hr) approximately. We also develop a current amplifier to build a radiation monitor. The radiation measurement calibration has been performed on the monitor, which was proved to have a very good linearity in logarithm scale. Hence, Solar Cell detector and monitor can be used for the high range radiation measurement during accident of nuclear power plant.
參 考 文 獻
References :
[ 1 ] Dieter K. Schroder., "Semiconductor material and device characterization", New York :/Wiley,/c. pp.379-386. 1998.
[ 2 ] S.M. Sze, "Semiconductor devices: physics and technology, 2nd Ed. ", John Wiley, pp.218-220, pp.313-325, 2002.
[ 3 ] Glenn F. Knoll, "Radiation Detection and measurement 3rd ed. ", John Wiley & Sons, Inc. ch.11, pp.399, pp.751-752, 1999.
[ 4 ] T. P. Ma, Paul V. Dressendorfer, “Ionizing radiation effects in MOS devices and circuits”, New York :/Wiley,/c., pp.3-35, 1989.
[ 5 ] 吳泰良, "金氧半場效電晶體之加馬射線劑量計研究", 清華大學核子工程系碩士論文, pp.9-29, 1995.
[ 6 ] 鄭禮賢, "Effects of Forming Gas Annealing on the Recovery of Radiation Damaged Power MOSFETs", 國立交通大學電子工程系碩士論文, pp.7-20, 2003.
[ 7 ] 馮光賢, "太空電子元件抗輻射評估與退火處理之研究", 清華大學核子工程系碩士論文, pp.8-19, 1995.
[ 8 ] 清大工科系張廖貴術,王天戈教授, “核能電廠事故爐心損毀評估與輻射偵測技術研究第三部分:核能電廠事故高輻射劑量計與抗輻射電子元件製作研究”, 台灣電力股份有限公司委託研究計畫, 2002-2004.
[ 9 ] 盧俊源, "金氧半電晶體氧化層電荷與界面陷阱量測研究", 清華大學工程與系統科學系碩士論文, pp.35-46, 2001.
[ 10 ] Prevost, G.; Augier, P.; Palau, J.-M., “The use of charge-pumping for characterizing irradiated power MOSFETs”, IEEE Transactions on Nuclear Science, Vol. 43, No.3, pp.858 - 864, June 1996.
[ 11 ] Heremans, P.; Witters, J.; Groeseneken, G.; Maes, H.E., “Analysis of the charge pumping technique and its application for the evaluation of MOSFET degradation”, IEEE Transactions on Electron Devices, Vol.36, No.7, pp.1318-1335, July 1989.
[ 12 ] R. B. Klein, N. S. Saka and Z. Shanfield, “SATURATION OF RAIDATION-INDUCED THRESHOLD-VOLTAGE SHIFTS IN THIN-OXIDE MOSFETs AT 80 K”, IEEE Transactions on Nuclear Science, Vol. 37, No.6, pp.26-34, December 1990.
[ 13 ] B. Djezzar, A. Smatti, A. Amrouche and M. Kechouance, “Channel-Length Impact on Radiation-Induced Threshold-Voltage shift in N-MOSFET’s Devices Low Gamma Rays Radiation Doses”, IEEE Transactions on Nuclear Science, Vol. 47, No.6, pp.1872-1878, December 2000.
[ 14 ] Sharp, R.E.; Pater, S.L., “The influence of dose rate on total dose radiation effects on MOSFETs”, Radiation and Its Effects on Components and Systems, 2001. 6th European Conference, pp.488-493, Sept. 2001.
[ 15 ] G. Sarrabayrouse and S. Siskos, “Radiation Dose Measurement using MOSFETs”, IEEE Instrumrentation & Measurement Magazine, pp.26-34, June 1998.
[ 16 ] W. E. Johnson, “Area and Process Radiation Monitoring System Guide”, Nuclear Maintenance Applications Center (NMAC), EPRI Revision 2 of TR-104862, pp.2.1-2.31,August 2003.
[ 17 ] Kyomasu, M.; Nakamura, H.; Suzuki, T.; Kato, K.; Sahara, M., “Integrated high speed silicon PIN photodiode sensor”, Solid-State Sensors and Actuators, 1991. Digest of Technical Papers, '91. International Conference on TRANSDUCERS, 24-27, pp.289-292, June 1991.
[ 18 ] A C Chang and W D Hill, “An Area Radiation Monitoring System for Nuclear Plants Using PIN Photodiodes”, Nuclear Science Symposium and Medical Imaging Conference Record, 1995., IEEE Volume 2, 21-28, pp.923-925, Oct. 1995.
[ 19 ] Sueki Baba, Hiroshi Tsutsui, Kouichi Ohmori, Tetsuro Ohtsuchi, Hideo Toyoda, Hiromasa Funakoshi, and Toshiyuki Kawara, “A High Speed Cadmium Telluride Radiation Detector”, IEEE Transactions on Nuclear Science, Vol. 40, No. 1, pp. 56-62, February 1993.
[ 20 ] Hsun-Hua Tseng, Jinn-Yih Wu, and Hwei-Fu Chang, “Study of Si Dectector for Accident Monitoring Applications”, Institute of Nuclear Energy Research, Lung-Tan, Taiwan, ROC. 1996.
[ 21 ] Chen, C.R.; Jiang, S.H.; Tseng, H.H.; Chang, H.F., “Energy response and filter compensation of PIN Si photodiode for personal dosimetry application”, Nuclear Science Symposium and Medical Imaging Conference, IEEE, 25-31, Vol.1, pp.70-72, Oct. 1992.
[ 22 ] 盧勤庸, “電子電路模擬 Pspice A/D”, 全華科技圖書公司, ch.3,4,5, 2001.
[ 23 ] 映陽科技訓練教材, “OrCAD Capture/ Pspice for Windows”, 映陽科技股份有限公司, pp.1-52, 2002.
[ 24 ] Fredrick W. Hughes, “Op Amp Handbook”, Prentice-Hall Inc., New Jersey, pp.219-221, 1981.
[ 25 ] Kuei-Shu CHANG-LIAO and Tai-Liang WU, “Radiation Dosimeters for High Dose by Commercial PMOS Transistors Using Normalized Drain Current as Dosimetric Parameter”, Journal of Nuclear Science and Technology, Vol. 34, No. 10, pp.992-995, October 1997.