簡易檢索 / 詳目顯示

研究生: 林盛勳
Lin, Sheng-Hsun
論文名稱: 新多苯環材料合成與應用以及高效率有機發光二極體之開發研究
Synthesis and Applications of New Polycyclic Aromatic Hydrocarbons (PAH) Materials and Development of Highly Efficient Materials in OLEDs
指導教授: 劉瑞雄
Liu, Rai-Shung
口試委員: 劉瑞雄
黃國柱
蔡易州
刁維光
陳銘洲
劉佳明
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 383
中文關鍵詞: 多苯芳香環材料有機發光二極體有機光電材料深紅磷光銥錯合物深藍螢光
外文關鍵詞: Polycyclic Aromatic Hydrocarbons, Organic-Light-Emitting diode, Organic Electroluminesence, OLED, OEL, anthracene, Ir-complexes, deep red, deep blue
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要分為三章:第一章是開發新型小型多環芳香材料,並評估材料可應用性;第二章是將開發的小型多環芳香材料分子深入的應用在深藍光的有機發光二極體材料上;第三章是設計合成一系列銥錯合物,並對它們OLED元件與基本物理特性作探討。
    第一章:
    我們合成一系列小型多芳香環分子,並利用它們的易於修改結構的特性,藉此可以大範圍修改它們電子能階(HOMO、LUMO)。利用我們的方法,可以合成2,3,6,7-四苯基取代蒽的起始物,並在9,10位置分別引進苯基、炔基與氨基的取代基。這些簡單的結構修改可以有效率的修改化合物的放光波長,也大幅增加它們的量子產率。如此可以擁有可調性多變的能隙小分子相信可以廣泛應用在材料化學上。
    第二章:
    我們合成一系列2,3,6,7,9,10-六苯基蒽,並以此材料作為有機發光二極體的深藍光客發光體材料。藉由修改在9,10位置的苯基上氟或烷基取代,最大放光波長介於439 nm ~ 453 nm,相對量子效率在53 % ~ 74 %,HOMO與LUMO在5.40 eV ~ 5.70 eV與2.58 eV ~2.89 eV之間。這些六苯基蒽衍生物熱分解溫度皆高於300℃。我們以1bb為摻雜物元件,EQE可以達到5.3% (4.83 cd/A),光色在深藍光領域CIEx, y(0.14, 0.10);另外,經過元件改良後,以4a為摻雜物元件EQE可達到6.7% (7.52 cd/A),光色在CIEx, y(0.14, 0.13)。
    第三章:
    我們設計並合成一系列6-氟異喹靈-1-苯基的銥錯合物,利用取代基影響來微調控放光波長(607 nm ~ 637nm)與電子能階,並根據其對放光波長影響的結果來揭露不同位置的取代基對光色的影響。在這些氟取代錯合物(1i ~ 8i)中,以6i為客發光體材料的元件有最好的效率,效率可以達到17.63% (19.88 cd/A),光色在CIEx,y(0.65, 0.33)。


    This thesis describes the preparation and tuning of photoelectronic properties of two classes of polycyclic aromatic hydrocarbon (PAH) and Ir-bearing isoquinoline complexes. For sake of ease of better discussion, this thesis has been divided into three chapters.
    Chapter1
    The work presented in this chapter serves as the first demonstration that structural modification of small PAH produces a great alteration of the electronic states, giving HOMO–LUMO gaps over a wide range. In our approach, the anthracene framework was attached to four phenyl groups at the 2,3,6,7 positions, and two additional phenyl, alkynyl and diphenylamino groups at the 9, 10 positions. Such substituent modification not only effectively tunes the emission wavelength, but also enhances fluorescent quantum yields. Such PAH with diverse energy gaps should have widespread applications in materials chemistry. (Chem. Commun., 2009, 6961)
    Chapter2
    The chapter 2 demonstrates that the 2,3,6,7,9,10-hexaphenylanthracene-based derivatives were synthesized to serve as deep-blue dopants in organic EL devices. The emissions of fluorophores, fine-tuned from 439 to 453 nm with varied substituted phenyl rings attached to the anthracene core, produced PL quantum yields of 53–74% in solution. These blue dopants in dilute solutions showed no spectral red shift with increasing solvent polarity; the emission color of dopants is thus insensitive to the polarity of the medium. The HOMO、LUMO energy levels are 5.40–5.70 eV and 2.58–2.89 eV, respectively. These blue dopants undergo thermal decomposition at temperatures greater than 300 °C. The 1bb-doped EL devices attained an EQE as much as 5.3% (4.83 cd/A) with CIEx, y (0.14, 0.10);After optimizing the device configuration, the efficiency of 4a-doped EL devices reached 6.7% (7.52 cd/A) with CIEx, y (0.14, 0.13). (J. Mater. Chem., 2011, 21, 8122)

    Chapter3
    We designed and synthesized a series of Ir-phenyl-isoquinolino complexes with varied substituent on isoquinoline or phenyl groups to alter the emission wavelength (607 nm ~ 637nm) and the electronic states. According to result of the emission, we revealed the effect of substituent at different position on phenyl group. Among these fluoronated complexes 1i ~ 8i, the efficiency of 6i-doped device is superior to others. It show maximum external quantum efficiencies as high as 17.63% (19.88 cd/A) at CIEx, y (0.65, 0.33).

    摘要---------------------------------------------------------------------------------Ι Abstract---------------------------------------------------------------------------III 目錄--------------------------------------------------------------------------------V 表目錄---------------------------------------------------------------------------VII 圖目錄--------------------------------------------------------------------------VIII 緒章 有機發光二極體(OLED)介紹、有機場效電晶體(OFET)簡介、液 晶(LC)簡介--------------------------------------------------------1 第一節 OLED發展演進與分子放光原理-------------------------2 第二節 OLED元件發光原理與材料選擇-------------------------5 第三節 OLED主客體的能量傳遞方式----------------------------8 第四節 OLED元件的發光效率-----------------------------------12 第五節 OLED的元件壽命-----------------------------------------14 第六節 有機場效電晶體(OFET)簡介----------------------------17 第七節 液晶(liquid crystal)簡介-----------------------------------24 第一章 合成光學物理、光色可調式的9,10-二取代-2,3,6,7-四苯基蒽---------------------------------------------------------------------------35 第一節 實驗構想與蒽的材料應用-------------------------------35 第二節 利用Cu(OTf)2催化制備2,3,6,7四苯基蒽------------44 第三節 9,10-二取代-2,3,6,7-四苯基蒽之合成與物理性質--48 第四節 結論----------------------------------------------------------57 實驗部分---------------------------------------------------------------58 參考文獻---------------------------------------------------------------67 第二章 六苯基蒽為摻雜物在深藍螢光有機發光二極體之研究------71 第一節 研究動機與藍光材料簡介-------------------------------71 第二節 分子設計、合成與基本物理性質------------------------82 第三節 深藍光元件的探討與壽命的改良----------------------88 第四節 結論---------------------------------------------------------103 實驗部分-------------------------------------------------------------104 參考文獻-------------------------------------------------------------109 第三章 紅色磷光銥錯合物的合成與其取代基對其光色的影響與研究--------------------------------------------------------------------------114 第一節 研究策略與目標------------------------------------------125 第二節 銥錯合物的合成與基本性質測試---------------------127 第三節 紅光銥金屬的元件測試---------------------------------134 第四節 結論---------------------------------------------------------146 實驗部分-------------------------------------------------------------147 參考文獻-------------------------------------------------------------162 附件一 儀器型號、量測方法、藥品--------------------------------------165 附件二 核磁共振光譜資料--------------------------------------------------173 附件三 X-ray 繞射結構分析-----------------------------------------------261 附件四 文獻發表--------------------------------------------------------------343 表目錄 表1-2a. 反應條件的最佳化---------------------------------------------------46 表1-2b. anthracene與2b ~2c的基本物理與光學性質------------------47 表1-3a. 2c和4a~4g 光學、物理與熱穩定性質----------------------------50 表1-3b. 4a的元件效能---------------------------------------------------------55 表2-2a. 1bb~6bb與4a光學、物理與熱穩定性質-------------------------84 表2-2b. 1bb, 2bb, 4bb和5bb元件效能-------------------------------------85 表2-2c. 1bb, 2bb, 4bb與5bb在電流20mA與100mA的效率與亮度表-----------------------------------------------------------------------------------86 表2-2d. 2bb與機光公司合作的數據----------------------------------------87 表2-3a. 1bb~3bb的物理性質-------------------------------------------------88 表2-3b. A~ G藍光的元件效能-----------------------------------------------90 表2-3c. 元件H~K效能--------------------------------------------------------97 表2-3d. 元件H~K在不同電流20mA與100mA的效率與亮度表--------------------------------------------------------------------------------------98 表3-0a. 含氟取代(piq)2Ir(acac)衍生物的元件效率---------------------122 表3-2a. 錯合物1i ~ 8i的基本物理性質------------------------------------130 表3-3a. 雙極性主發光體TICNBI與TICCBI的基本性質-----------134 表3-3b. TICNBI為主發光體的元件效率---------------------------------135 表3-3c. TICCBI為主發光體的元件效率----------------------------------137 表3-3d. 元件A ~ D的結構與相關的元件效率---------------------------140 表3-3e. 元件A ~ D在電流20mA、100mA的效率------------------------140 圖目錄 圖0-1a. 1987年柯達所發表的元件結構-------------------------------------3 圖0-1b. 劍橋團隊利用旋轉塗佈開發的單層原件-------------------------3 圖0-1c. 螢光與磷光放光機制-------------------------------------------------3 圖0-2a. 元件放光原理----------------------------------------------------------5 圖0-2b. 元件結構----------------------------------------------------------------6 圖0-3a. Fӧrster transfer的能量傳遞圖----------------------------------------9 圖0-3b. Dexter transfer能量傳遞圖-------------------------------------------9 圖0-3c. 使用螢光摻雜物放光的能量轉移---------------------------------10 圖0-3d. 使用磷光摻雜物放光的能量轉移---------------------------------11 圖0-4a. 有機電激發光元件的放光效率機制圖---------------------------12 圖0-6a. 電晶體元件剖面圖---------------------------------------------------18 圖0-6b. 元件W、L表示圖------------------------------------------------------19 圖0-6c. OFET操作I-V圖------------------------------------------------------19 圖0-6d. p-type的有機半導體分子-------------------------------------------21 圖0-6e. 16T-2C60結構----------------------------------------------------------22 圖0-6f. thiophene主體與拉電基團組成的n-type有機半導體材料----22 圖0-6g. 以1,4,5,8-naphthalene四取代衍生物為主體n-type材料-----22 圖0-6h. 以perylene衍生物為主體n-type材料----------------------------23 圖0-7a. 液晶分子設計之基本架構------------------------------------------24 圖0-7b. (a) 桿狀液晶(b) 板狀液晶列 (c) 盤狀液晶(d) 液晶高分子(e)液向性液晶高分子--------------------------------------------------------------25 圖0-7c. 層列型液晶------------------------------------------------------------26 圖0-7d. 膽固醇型液晶--------------------------------------------------------26 圖0-7e. (a) 不規則之圓盤狀液晶相Colhd (b) 規則之圓盤狀液晶相Colho (c) 傾斜之圓盤狀液晶相 (d) 六角柱圓盤狀液晶相 (e) 四角柱圓盤狀液晶相Colr---------------------------------------------------------------27 圖0-7f. triphenylene液晶分子------------------------------------------------28 圖0-7g. Dibenzo[g,p]chrysene液晶分子------------------------------------29 圖0-7h. Dibenzo[g,p]chrysene分子的基本物理性質---------------------29 圖1-1a. 新芳香環材料(PAHs)合成與應用概念圖------------------------35 圖1-1b. pentacene衍生物(1~12)的相關物理與電化學性質-------------37 圖1-1c. pentacene衍生物(1~12)結構圖-------------------------------------37 圖1-1d. Octafluoroanthracene衍生物、anthracene衍生物的UV吸收和能隙--------------------------------------------------------------------------------38 圖1-1e. Octafluoroanthracene衍生物、anthracene衍生物的電化學性質--------------------------------------------------------------------------------------39 圖1-1f. 9/10雙取代的octafluoroanthracene衍生物的結構圖-----------39 圖1-1g. 9/10雙取代的octafluoroanthracene衍生物的電化學性質----39 圖1-1h. 2-tBu-anthracene為主體結構的化合物4~9----------------------40 圖1-1i. 化合物4~9的物理光學與電化學性質----------------------------40 圖1-1j. 直線芳香環(acene)---------------------------------------------------41 圖1-1k. 單晶蒽的OFET元件I-V圖----------------------------------------42 圖1-1l. 2,6取代蒽的OFET材料的電荷移動率---------------------------42 圖1-1m. 2,6取代蒽的OFET材料的電荷移動率--------------------------43 圖1-1n. 2,6,9,10取代蒽的OFET材料結構與性質------------------------43 圖1-2a. AuCl3與 Cu(OTf)2 的4+2反應------------------------------------44 圖1-2b. 四取代蒽的合成構想-----------------------------------------------44 圖1-2c. 催化基質(substrate)的合成-----------------------------------------45 圖1-2d. 利用催化合成四苯基蒽(2a~2c)-----------------------------------45 圖1-2e. 2b、2c跟蒽的UV、PL比較圖---------------------------------------47 圖1-3a. 化合物2c的合成-----------------------------------------------------48 圖1-3b. 4a ~ 4g的合成--------------------------------------------------------48 圖1-3c. ORTEP drawing of 4c------------------------------------------------49 圖1-3d. ORTEP drawing of 4d------------------------------------------------50 圖1-3e. 2c與4a~4g的吸收光譜----------------------------------------------51 圖1-3f. 2c與4a~4g的放光光譜----------------------------------------------52 圖1-3g. 4e~4f在DCM 與 n-hexane的放光光譜-------------------------52 圖1-3h. 2c和4a~4g的HOMO-LUMO能階圖-----------------------------53 圖1-3i. 4g在施加電壓下的氧化情形(CV),a為第二氧化峰------------54 圖1-3j. TCTA、BCP、TPBI、DMPPP的結構-------------------------------55 圖1-3k. 4a為dopant在不同電壓的放光(EL)------------------------------55 圖1-3l. 電壓與亮度的關係圖------------------------------------------------56 圖1-3m.外部量子效應與電流的關係圖------------------------------------56 圖2-1a. DSA-Ph (a), monostyrylamine, (b) phenylaminopyrenes (c)結構圖--------------------------------------------------------------------------------72 圖2-1b. 柯達開發的ADN系列衍生物-------------------------------------73 圖2-1c. TBP與ADN的結構和ADN在摻雜與未摻雜TBP的效率圖--------------------------------------------------------------------------------------73 圖2-1d. 交大團隊開發的α,α-MADN結構(右)、與它與BD-1光譜的重疊情形(左)------------------------------------------------------------------------74 圖2-1e. Kwon團隊開發的深藍光主發光體材料--------------------------75 圖2-1f. 使用的元件結構(左)與ATB的結構(右)-------------------------75 圖2-1g. PATSPA的結構與使用的元件結構-------------------------------75 圖2-1h. BFAn與 TBDNPA的結構------------------------------------------76 圖2-1i. BCzVB、BCzVBi 與DPVBi結構---------------------------------76 圖2-1j. BCzVB、BCzVBi 摻雜在DPVBi 的EL放光與元件結構--------------------------------------------------------------------------------------77 圖2-1k. TPP、TMTP與TOTP結構-------------------------------------------77 圖2-1l. PPP、DOPPP與DMPPP的結構-------------------------------------78 圖2-1m. 主發光體材料DPYFL01與三聯芴為主架構的客發光體材料--------------------------------------------------------------------------------------78 圖2-1n. TBPSF與ter(9, 9-diarylfluorene)的主要結構--------------------79 圖2-1o. 韓國Gong教授開發的客發光體材料----------------------------80 圖2-1p. 鄭建鴻教授開發的雙三苯素系列材料與相關元件效率-----80 圖2-1q. PhQ-CVz結構(左上)及BCzVBi的能量轉移情形(右上)和元件相關結構與效率(下)------------------------------------------------------------81 圖2-2a. 化合物1bb~6bb的合成--------------------------------------------82 圖2-2b. ORTEP drawing of 3bb ---------------------------------------------83 圖2-2c. 1bb~6bb與4a的吸收光譜------------------------------------------84 圖2-2d. 1bb ~ 6bb與4a的放光光譜----------------------------------------85 圖2-2e. (a)簡單的元件結構與(b)各層能階圖-----------------------------87 圖2-3a. 1bb在不同極性的PL與固態的EL光譜-------------------------89 圖2-3b. DMPPP薄膜放光與1bb~3bb的吸收與放光比較圖------------89 圖2-3c. 摻雜元件(Device A-D)在6V的EL與(2%)1bb摻雜在DMPPP的PL-------------------------------------------------------------------------------91 圖2-3d. 1bb摻雜Device(A~C)電壓V對電流密度(mA/cm2)與亮度(cd/m2)的關係圖-----------------------------------------------------------------91 圖2-3e. 外部量子效應(EQE) vs電流 (device A-D)----------------------92 圖2-3f. 元件 D-F 在固定電流22.2 mA/cm2 (氮氣下)的操作壽命--------------------------------------------------------------------------------------93 圖 2-3g. NPB, NPNPB, BAlq的結構---------------------------------------94 圖2-3h. 元件E、F的電激發放光圖EL (6V)-------------------------------94 圖2-3i. 元件E、F電壓與亮度光關係圖------------------------------------95 圖2-3j. 元件G 在固定電流22.2 mA/cm2 (氮氣下)的操作壽命-------96 圖2-3k. 元件H~K的電激發放光圖EL (6V)------------------------------97 圖2-3l. 元件H~K 在亮度1000nits的操作壽命--------------------------98 圖3-0a. Carbazole為骨幹的傳統主發光體材料-------------------------115 圖3-0b. o-TPA-m-OXD的結構與相關元件效率------------------------115 圖3-0c. BCPO的結構與相關元件效率-----------------------------------116 圖3-0d. Kido團隊研發的bipolar host 與相關的元件效率------------116 圖3-0e. BIQS與(tmq)2Ir(acac)的結構與相關元件效率-----------------117 圖3-0f. Eu(TTA)3(Phen)、PtOEP與Ir(btp)2(acac)結構圖----------------118 圖3-0g. Okada發表的一系列紅光材料------------------------------------119 圖 3-0h. Dupont團隊利用CF3COOAg催化得到三螯合錯合物------120 圖 3-0i. 清大劉瑞雄團隊開發的以1-phenylisoquinoline為ligand的銥錯合物---------------------------------------------------------------------------120 圖 3-0j. (piq)2Ir(acac)衍生物的光學物理性質---------------------------121 圖3-0k. 含F取代的(piq)2Ir(acac)衍生物的基本物理光學性質(下)與其結構(上)-------------------------------------------------------------------------121 圖 3-0l. Ir(bt)2(acac)的衍生物結構---------------------------------------122 圖3-0m. Ir(bt)2(acac)的衍生物的基本物理光學性質------------------123 圖3-0n. 成大團隊開發的(piq)2Ir(acac)的衍生物------------------------123 圖3-0o. 成大團隊合成Ir(piq)2(acac)衍生物結構與基本物理光學與電化學性質------------------------------------------------------------------------124 圖 3-0p. Density function theory calculation (DFT) of HOMO and LUMO for 6b3------------------------------------------------------------------124 圖 3-1a. 文獻上不同取代基對光色的影響------------------------------126 圖 3-1b. 合成目標------------------------------------------------------------126 圖3-2a. 銥錯合物合成步驟-------------------------------------------------127 圖3-2b. 錯合物1i ~ 7i的UV吸收光譜-----------------------------------131 圖3-2c. 錯合物1i ~ 7i的PL放光光譜------------------------------------132 圖3-2d. 錯合物1i、6i、8i與(piq)2Ir(acac)的UV吸收光譜與PL放光光譜比較------------------------------------------------------------------------132 圖3-3a. TICNBI與TICCBI的結構---------------------------------------134 圖3-3b. TICNBI為主發光體的元件效率圖------------------------------136 圖3-3c. TICCBI為主發光體的元件效率圖-------------------------------138 圖3-3d. 紅色磷光元件A~D的壽命圖-------------------------------------141 圖3-3e. 元件各層材料結構-------------------------------------------------141

    緒章
    1.(a) L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E, Moons, R. H. Friend, J. D. Mackenzie, Science 2001, 293, 1119; (b) M. Bendikov, F. Wudl, Chem. Rev. 2004, 104, 4891; (c) A. M. van de craats, N. Stutzmann, O. Bunk, M. M. Nielsen, M. D. Watson, K. Müllen, H. D. Chanzy, H. Sirringhaus, R. H. Friend, Adv. Mater. 2003, 15, 495; (d) J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452; (e) F. Jäckel, M. D. Watson, K. Müllen, J. P. Rabe, Phys. Rev. Lett. 2004, 92, 188303.
    2.陳金鑫, 黃孝文, OLED-夢幻顯示器(Material and Devices of Dream Displays), 2007,五南圖書 第一版.
    3.(a) A. R. Murphy, J. M. J. Fre´chet, Chem. Rev. 2007, 107, 1066; (b) J. E. Anthony, Chem. Rev. 2006, 106, 5028; (c) J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
    4.L. R. Dalton, P. A. Sullivan, D. H. Bale, Chem. Rev. 2010, 110, 25.
    5.(a) S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324. (b)Y. -J. Cheng, S.-H.Yang, C. -S. Hsu, Chem. Rev. 2009, 109, 5868; (c) A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595; (d) A. W. Hains, Z. Liang, M. l A. Woodhouse, B. A. Gregg, Chem. Rev. 2010, 110, 6689.
    6.P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, M. E. Thompson, IEEE Trans. Electron Device 1997, 44, 11888.
    7.P. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys. 1963, 38, 2042.
    8.D. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Robert, Thin Solid Films, 1982, 94, 171.
    9.C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
    10.J. H. Burroughs, D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 1990, 347, 539.
    11.Forster. T. Disc. Faraday Soc. 1959, 27, 7.
    12.Dexter. D. L. J. Chem. Phys. 1953, 21, 836.
    13.M. A. Baldo, D. F. O’ Brien, M. E. Thomspon, S. R. Forrest, Phys. Rev. B 1999, 60, 20.
    14.Text book of Basic Optics.
    15.G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E. Thompson, Opt. Lett. 1997, 22, 396.
    16.T. Tsutsui, S. Satio, in Intrinsically Conducting Polymer: An Emerging Technology, edited by Aldissi, M., Academic, K. Dordreccht 1993, p. 123.
    17.內容參考 博士論文 周鶴修(Ho-Hsiu Chou) 2010, 博士論文 沈宏欽(Hung-Chin Shen) 2006, 博士論文 李建樂(Chien-Le Li) 2003, 碩士論文 謝依萍(Yi-Ping Hsieh)2004.
    18.(a) S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett., 1996, 69, 878; (b) C. Fery, B. Racine, D. Vaufrey, H. Doyeux, and S. Cina, Appl. Phys. Lett., 2005, 87, 213502.
    19.(a) P. N. M. dos Anjos, H. Aziz, N.-X. Hu, Z. D. Popovic, Organic Electronic, 2002, 3, 9 ; (b) M. Fujihira, L.–M. Do, A. Koike, E.-M. Han, Appl. Phys. Lett., 1996, 68, 1787.
    20.(a) J. McElvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D. M. Roitman, J. R. Sheats, R. L. Moon, Appl. Phys. Lett., 1996, 80, 6002; (b)H. Aziz, Z. D. Popovic, C. P. Tripp, N. Hu, A. Hor, G. Xu, Appl. Phys. Lett., 1998, 72, 2642; (c) H. Aziz, Z. D. Popovic, S. Xie, A. Hor, N. Hu, C. P. Tripp, G. Xu, Appl. Phys. Lett., 1998, 72, 756.
    21.(a) S. F. Lim, L. Ke, W. Wang, S. J. Chua, Appl. Phys. Lett., 2001, 78, 2116; (b) S. F. Lim, W. Wang, S. J. Chua, Mater. Sci. Eng., 2001, B85, 154.
    22.Z. D. Popovic, H. Aziz, IEEE J. Sel, Top. Quantum. Electron., 2002, 8, 362.
    23.C. Adachi, K. Nagai, N. Tamoto, Appl. Phys. Lett., 1995, 66, 2679.
    24.(a) J. Shi, C. W. Tang, Appl. Phys. Lett., 1997, 70, 1665; (b) D. Y. Kondakov, W. F. Nichol, W. C. Lenhart, Proceedings of SID’7, p1494, May 22-25, 2007, Long Beach, California, USA.
    25.J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang, J. Shi, Synth. Met., 2000, 111/112, 233.
    26.S. T. Lee, Z. Q. Gao, L. S. Hung, Appl. Phys. Lett., 1999, 75, 1404.
    27.D. Y. Kondakov, J. R. Sandifer, C. W. Tang, R. H. Young, J. Appl. Phys., 2003, 93, 1108.
    28.G. P. Crawford, Flexible flat panel displays; Wiley: New York, 2005.
    29.C. D. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater., 2002, 14, 99.
    30.G. Horowitz, Adv. Mater., 1998, 10, 365.
    31.(a) H. E. Katz, Z. Bao, S. L. Gilat, Acc. Chem. Res., 2001, 34, 359 ;(b) H. E. Katz, Chem. Mater. 2004, 16, 4748; (c) D. J. Gundlach, Y.-Y. Lin, T. N. Jackson, IEEE Electron Device Lett., 1997, 18, 87; (d) Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Electron Device Lett. 1997, 18, 606; (e) H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, W. Weber, J. Appl. Phys. 2002, 92, 5259.
    32.(a) G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, Solid State Commun. 1989, 72, 381; (b) H. Akimichi, K. Waragai, S. Hotta, H. Kano, H. Sakati, Appl. Phys. Lett., 1991, 58, 1500; (c) F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, J. Am. Chem. Soc., 1993, 115, 8716; (d) S. A. Ponomarenko, S. Kirchmeyer, A. Elschner, B. H. Huisman, A. Karbach, D. Drechsler, Adv. Funct. Mater., 2003, 13, 591.
    33.(a) W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, K. Müllen, Adv. Mater., 2005, 17, 684; (b) R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett., 1995, 67, 121;(c) Y. Kunugi, K. Takimiya, N. Negishi, T. Otsubo, Y. Aso, J. Mater. Chem., 2004, 14, 2840.
    34.Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc., 1998, 120, 207.
    35.(a) A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R. H. Friend, Angew. Chem. Int. Ed., 2000, 39, 4547; (b) A. Facchetti, M.-H. Yoon, C. L. Stern, H. E. Katz, T. J. Marks, Angew. Chem. Int. Ed., 2003, 42, 3900; (c) M.-H. Yoon, S. A. DiBenedetto, A. Facchetti, T. J. Marks, J. Am. Chem. Soc., 2005, 127, 1348; (d) J. A. Letizia, A. Facchetti, C. L. Stern, M. K. Ratner, T. J. Marks, J. Am. Chem. Soc., 2005, 127, 13476; (e) R. J. Chesterfield, C. R. Newman, T. M. Pappenfus, P. C. Ewbank, M. H. Haukaas, K. R. Mann, L. L. Miller, C. D. Frisbie, Adv. Mater., 2003, 15, 1278.
    36.(a) J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, J. Am. Chem. Soc. 1996, 118, 11331; (b) H. E. Katz, J. Johnson, A. J. Lovinger, W. Li, J. Am. Chem. Soc., 2000, 122, 7787; (c) H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y.-Y. Lin, A. Dodabalapur, Nature, 2000, 404, 478.
    37.(a) B. A. Jones, M. J. Ahren, M.-H. Yoon, A. Facchetti, T. J. Marks, M. R. Wasielewski, Angew. Chem. Int. Ed., 2004, 43, 6363; (b) Z. An, J. Yu, S. C. Jones, S. Barlow, S. Yoo, B. Domercq, P. Prins, L. D. A. Siebbeles, B. Kippelen, S. R. Marder, Adv. Mater., 2005, 17, 2580 ; (c) H.-Z. Chen, M.-M. Shi, T. Aernouts, M. Wang, G. Borghs, P. Heremans, Solar Energy Materials & Solar Cells, 2005, 87, 521.
    38.液晶基本知識、圖片來源來至 (a)元智大學 液晶光電實驗室網站(黃振球教授) http://www.e-lcd.com.tw/boss.htm;(b)清華大學 博士論文 李佳紋 2010;(c) 中央大學 碩士論文 吳進益 2001。
    39.(a) I. Paraschiv, P. Delforterie, M. Giesbers, M. A. Posthumus,A. T. M. Marcelis, H. Zuilhof, E. J. R. Sudholter, Liquid Crystals, 2005, 32, 977; (b) R. Chaudhuri, M.-Y. Hsu, C.-W. Li, C.-I Wang, C.-J. Chen, C. K. Lai, L.-Y. Chen, S.-H. Liu, C.-C. Wu, R.-S. Liu, Org. Lett., 2008, 10, 3035.
    第一章
    1.H. E. Katz, Z. Bao, S. L. Gilat, Acc. Chem. Res. 2001, 34, 359.
    2.H. E. Katz, Chem. Mater. 2004, 16, 4748.
    3.(a) Y. Li, Y. Wu, P. Liu, Z. Prostran, S. Gardner, Beng S. Ong, Chem. Mater., 2007, 19, 418;(b) T. Okamoto, Z. Bao, J. Am. Chem. Soc., 2007, 129, 10308;(c) I.Kaur, W. Jia, R. P. Kopreski, S. Selvarasah, M. R. Dokmeci, C. Pramanik, N. E. McGruer, G. P. Miller, J. Am. Chem. Soc., 2008, 130, 16274; (e) M. L. Tang, S. C. B. Mannsfeld, Y.-S. Sun, H. A. Becerril, Z. Bao, J. Am. Chem. Soc., 2009, 131, 882; (f) M. L.Tang, J. Hak Oh, A. D. Reichardt, Z. Bao, J. Am. Chem. Soc., 2009, 131, 3733; (g) M. L. Tang, A. D. Reichardt, P. Wei, Z. Bao, J. Am. Chem. Soc., 2009, 131, 5264; (h) M. L. Tang, A. D. Reichardt, N. Miyaki, R. M. Stoltenberg, Z. Bao, J. Am. Chem. Soc., 2008, 130, 6064; (i) S. Katsuta, D. Miyagi, H. Yamada, T. Okujima, S. Mori, K. Nakayama, H. Uno, Org. lett., 2011, 13, 1454; (j) D. Lehnherr, J. Gao, F. A. Hegmann, R. R. Tykwinski, Org. lett., 2008, 10, 4779; (k) J. E. Anthony, Angew. Chem. Int. Ed., 2008, 47, 452.
    4.(a) J. Y. Lee, S. W. Chu, J. S. Kim, Y. W. Park, Appl. Phys. Lett., 2004, 84,5383;(b) H. Meng, F. Sun, M. B. Goldfinger, G. D. Jaycox, Z. Li, W. J. Marshall, G. S. Blackman, J. Am. Chem. Soc., 2005, 127, 2406; (c) K. Ito, T. Suzuki, Y. Sakamoto, D. Kubota, Y. Inoue, F. Sato, S. Tokito, Angew. Chem. Int. Ed., 2003, 42, 1159;(d) J. F. Tannaci, M. Noji, J. L. McBee, T. D. Tilley, J. Org. Chem., 2008, 73, 7895; (e) Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, S. Tokito, J. Am. Chem. Soc., 2004, 126, 8138;(f) J.-H. Park, D. S. Chung, J.-W. Park, T. Ahn, H. Kong, Y. K. Jung, J. Lee, M. H. Yi, C. E. Park, S.-K. Kwon, H.-K. Shim, Org. Lett., 2007, 9, 2573.
    5.C. H. Chien, C. K. Chen, F. M. Hsu, C. F. Shu, P. T. Chou, C. H. Lai, Adv. Funct. Mater., 2009, 19, 560.
    6.(a) K. C. Wu, P. J. Ku, C. S. Lin, H. T. Shih, F. I. Wu, M. J. Huang, J. J. Lin, I. C. Chen, C. H. Cheng, Adv. Funct. Mater., 2008, 18, 67; (b) C. H. Cheng, H. T. Shih, K. C. Wu, US Patent 6861163, 2005; (c) S. Tao, Z. Peng, X. Zhang, P. Wang, C. S. Lee and S. T. Lee, Adv. Funct. Mater., 2005, 15, 1716; (d) C. Tang, F. Liu, Y. J. Xia, L. H. Xie, A. Wei, S. B. Li,Q. L. Fan, W. J. Huang, J. Mater. Chem., 2006, 16, 4074; (e) J. A. Mikroyannidis, L. Fenenko, C. Adachi, J. Phys. Chem. B, 2006, 110, 20317; (f) M. Y. Lo, C. Zhen, M. Lauters, G. E. Jabbour, A. Sellinger, J. Am. Chem. Soc., 2007, 129, 5808.
    7.(a) B. X. Mi, Z. Q. Gao, C. S. Lee, S. T. Lee, Appl. Phys. Lett.,1999, 75, 4055; (b) C. Kufazvinei, M. Ruether, J. Wang, W. Blau, Org. Electron., 2009, 10, 674.
    8.A. S. Ionkin, W. J. Marshall, B. M. Fish, L. M. Bryman, Y. Wang, Chem. Commun., 2008, 2319.
    9.(a) Y. Kikuzawa, T. Mori and H. Takeuchi, Org. Lett., 2007, 9, 4817; (b) M. Weck, A. R. Dunn, K. Matsumoto, G. W. Coates, E. B. Lobkovsky, R. H. Grubbs, Angew. Chem., Int. Ed., 1999, 38, 2741; (c) R. Chaudhuri, M. Y. Hsu, C. W. Li, C. I. Wang, C. J. Chen, C. K. Lai, L. Y. Chen, S. H. Liu, C. C. Wu , R. S. Liu, Org. Lett., 2008, 10, 3053.
    10.(a) J. Wu, W. Pisula, K. Mullen, Chem. Rev., 2007, 107, 718; (b) S. Sergeyev, W. Pisula, Y. H. Geerts, Chem. Soc. Rev., 2007, 36, 1902; (c) S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hagele., G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, Angew. Chem., Int. Ed., 2007, 46, 4832.
    11.(a) M. Bendikov, F. Wudl, Perepichka, D. F. Perepichka, Chem. Rev., 2004, 104, 4891; (b) J. E. Anthony, Chem. Rev., 2006, 106, 5028.
    12.(a) D. Bailey, V. E. Williams, Chem. Commun., 2005, 2569; (b) D. Bailey, V. E. Williams, Tetrahedron Lett., 2004, 45, 2511.
    13.N. Asao, T. Nogami, S. Lee, Y. Yamamoto, J. Am. Chem. Soc., 2003, 125, 10921.
    14.M. C. Bonifacio, C. R. Robertson, J.-Y. Jung, B. T. King, J. Org. Chem., 2005, 70, 8522.
    15.J. F. Tannaci, M. Noji, J. McBee, T. D. Tilley, J. Org. Chem., 2007, 72, 5567.
    16.(a) D. Zehm, W. Fudickar, T. Linker, Angew. Chem., Int. Ed., 2007, 46, 7689; (b) N. Miyaura, A. Suzuki, Chem. Rev., 1995, 95, 2457.
    17.(a) K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett., 1975, 16, 4467; (b) K. Sonogashira, in Handbook of Organopalladium Chemistry for Organic Synthesis, ed. E. Negishi, A. Meijere, Wiley-VCH, New York, 2002; (c) E. Negishi, L. Anastasia, Chem. Rev., 2003, 103, 1979.
    18.(a) C. Lambert, C. Risko, V. Coropceanu, J. Schelter, S. Amthor, N. E. Gruhn, J. C. Durivage, J. L. Bredas, J. Am. Chem. Soc., 2005, 127, 8508; (b) J. Hartwig, Palladium-Catalyzed Amination of Aryl Halides and Related Reactions, in Handbook of Organopalladium Chemistry for Organic Synthesis, ed. E. Negishi, Wiley, New York, 2002, 1051.
    19.(a) T. J. Meyer, Pure Appl. Chem., 1986, 58, 1193; (b) J. V. Caspar and T. J. Meyer, J. Phys. Chem., 1983, 87, 952.
    20.K. Danel, T.-H. Huang, J. T. Lin, Y.-T. Tao, C.-H. Chuen, Chem. Mater., 2002, 14, 3860.
    21.Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, S. Tokito, J. Am. Chem. Soc., 2004, 126, 8138.
    第二章
    1.C. W. Tang, S. A. Van Slyke, Appl. Phys. Lett., 1987, 51, 913.
    2.(a) L. S. Hung, C. H. Chen, Materials Science and Engineering R, 2002, 39, 143; (b) C. H. Chen, C. W. Tang, J. Shi, K. P. Klubek, Macromol. Symp., 1998, 125, 49; (c) S. Miyata, H. S. Nalwa, Eds. Organic Electroluminescent Materials and Devices, Gordon and Breach; New York, 1997; (d) T. Wakimoto, H. Ochi, S. Kawami, H. Ohata, K. Nagayama, R. Murayama, H. Okuda, T. Tohma, T. Naito, H. Abiko, J. Soc. Inf. Disp., 1997, 5, 235; (e) P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, M. E. Thompson, IEEE Trans. Electron Devices, 1997, 44, 1188; (f)Y. J. Tung, T. Nago, M. Hack, J. Brown, N. Koide, Y. Nagara,Y. Kato, H. Ito, SID 2004 Technical Digest, 2004, 35, 48.
    3.(a) Y. -H. Kim, D. -C. Shin, S. -H. Kim, C. -H. Ko, H. -S. Yu, Y. -S. Chae, S. -K. Kwon, Adv. Mater., 2001, 13, 1690; (b) J. Shi, C. W. Tang, Appl. Phys. Lett., 2002, 80, 3201; (c) Y. –H. Kim, H. –C. Jeong, S. –H. Kim, K. Yang, S. –K. Kwon, Adv. Funct. Mater., 2005, 15, 1799; (d) P. -T Shih, C. -Y. Chuang, C. -H. Chien, E. W. -G. Diau, C. -F. Shu, Adv. Funct. Mater., 2007, 17, 1341; (e) Y. Y. Lyu, J. K., O. Kwon, S. H. Lee, D. Kim, C. Lee, K. Char, Adv. Mater., 2008, 20, 2720; (f) C. H. Wu, C. H. Chien, F. M. Hsu, P. I. Shih, C. F. Shu, J. Mater. Chem., 2009, 19, 1464; (g) C. J. Zheng, W. M. Zhao, Z. Q. Wang, D. Huang, J. Ye, X. M. Ou, X. H. Zhang, C. S. Lee, S. T. Lee, J. Mater. Chem., 2010, 20, 1560; (h) S. Ye, J. Chen, C. -A. Di, Y. Liu, K. Lu, W. Wu, C. Du, Y. Liu, Z. Shuai, G. Yu, J. Mater. Chem., 2010, 20, 3186; (i) Z. -Y. Xia, Z. -Y. Zhang, J. -H. Shu, Q. Zhang, K. -M. Fung, M. -K. Lam, K. -F. Li, W.-Y. Wong, K. -W. Cheah, H. Tian, C. H. Chen, J. Mater. Chem., 2010, 20, 3768; (j) K. Danel, T.-H. Huang, J. T. Lin, Y.-T. Tao, C.-H. Chuen, Chem. Mater., 2002, 14, 3860.
    4.(a) S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. -F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, J. Appl. Phys., 1998, 84, 2324; (b) F. -I. Wu, P. -I. Shih, M. -C. Yuan, C. -F. Shu, Z. -M. Chung, E.W. -G. Diau, J. Mater. Chem., 2005, 15, 4752; (c) Y. Duan, Y. Zhao, P. Chen, J. Li, S. Liu, F. He, Y. Ma, Appl. Phys. Lett., 2006, 88, 263503.
    5.(a) C. –C. Wu, Y. –T. Lin, K. –T. Wong, R. –T. Chen, Y. –Y. Chien, Adv. Mater., 2004, 16, 61; (b) F. –I. Wu, C. –F. Shu, T. –T. Wang, E. W. –G. Diau, C. –H. Chien, C. –H. Chuen, Y. –T. Tao, Synth. Met., 2005, 151, 285; (c) Z. P. Silu, X. Zhang, J. Tang, C. S. Lee, S. -T. Lee, J. Phys. Chem. C, 2008, 112, 2165; (d) C. C. Wu, Y. T. Lin, H. H. Chiang, T. Y. Cho, C. W. Chen, K. T. Wong, Y. L. Liao, G. H. Lee, S. M. Peng, Appl. Phys. Lett., 2002, 81, 577; (e) Y.-M. Jeon, J.-Y. Lee, J.-W. Kim, C.-W. Lee, M.-S. Gong, Organic Electronics, 2010, 11, 1844.
    6.(a) H. –T. Shih, C. –H. Lin, H. –S. Shih, H. –C. Cheng, Adv. Mater., 2002, 14, 1409; (b) J. -Y. Yu, M. -J. Huang, C. -H Chen, C. -S. Lin, C. -H. Cheng, J. Phys. Chem. C, 2009, 113, 7405; (c) H. P. Rathnayake, A. Cirpan, Z. Delen, P. M. Lahti, F. E. Karasz, Adv. Funct. Mater. 2007, 17, 115; (d) H. P. Rathnayake, A. Cirpan, P. M. Lahti, F. E. Karasz, Chem. Mater. 2006, 18, 560.
    7.(a) A. P. Kulkami, A. P. Gifford, C. J. Tozola, S. A. Jenekhe, Appl. Phys. Lett., 2005, 86, 061106; (b) C. J. Tonzola, A. P. Kukarni, A. P. Gifford, W. Kaminsky, S. A. Jenekhe, Adv. Funct. Mater., 2007, 17, 863; (c) S. J. Lee, J. S. Park, K. -J. Yoon, Y. -I. Kim, S. -H. Jin, S. K. Kang, Y. -S. Gal, S. Kang, J. Y. Lww, J. -W. Kang, S. -H. Lww, H. -D. Park, J. -J. Kim, Adv. Funct. Mater., 2008 , 18, 3922.
    8.(a) S. Tao, Z. Peng, X. Zhang, P. Wang, C. –S. Lee, S. –T. Lee, Adv. Funct. Mater., 2005, 15, 1716; (b) C. Tang, F. Liu, Y. –J. Xia, L. –H. Xie, A. Wei, S. –B. Li, Q. –L. Fan, W. J. Huang, J. Mater. Chem., 2006, 16, 4074; (c) M. Y. Lo, C. Zhen, M. Lauters, G. E. Jabbour and A. Sellinger, J. Am. Chem. Soc., 2007, 129, 5808; (d) K. -C. Wu, P. -J. Ku, C. -S. Lin, H -T. Shih, F. -I. Wu, M. -J. Huang, J. -J. Lin, I. -C. Chen, C. -H. Cheng, Adv. Funct. Mater., 2008, 18, 67; (f) S. Tao, T. Zhou, C. -S. Lee, X. Zhang, S. -T. Lee, Chem. Mater., 2010, 22, 2138.
    9.(a) M. T. Lee, H. H. Chen, C. H. Liao, C. H. Tsai, Appl. Phys. Lett., 2004, 85, 3301; (b) M. H. Ho, Y. S. Wu, S. W. Wen, M. T. Lee, T. M. Chen, C. H. Chen, K. C. Kwok, S. K. So, K. T. Yeung, Y. K. Cheng, Z. Q. Gao, Appl. Phys. Lett., 2006, 89, 252903.
    10.(a) M. Uchida, C. Adachi, T. Koyama, Y. Taniguchi, J. Appl. Phys., 1999, 86, 1680; (b) F. -I. Wu, P. -I Shih, Y. -H. Tseng, G. -Y. Chen, C. -H. Chien, C. -F. Chu, Y. -L. Tung, Y. Chi, A. K. -Y. Jen, J. Phys. Chem. B, 2005, 109, 14000.
    11.(a) C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, Appl. Phys. Lett., 1995, 67, 3853; (b) K. Suzuki, A. Seno, H. Tanabe, K. Ueno, Synth. Met., 2004, 143, 89; (c) M. S. Kim, B. K. Choi, T. W. Lee, D. Shin, S. K. Kang, J. M. Kim, S. Tamura, T. Noh, Appl. Phys. Lett., 2007, 91, 251111; (d) K. H. Lee, L. K. Kang, Y. S. Kwoo, J. Y. Lee, S. Kang, G. Y. Kim, J. H. Seo, Y. K. Kim, S. S. Yoon, Thin Solid Films, 2010, 518, 5091;
    12. (a) M. T. Lee, C. H. Liao, C. H. Tsai, C. H. Chen, Adv. Mater., 2005, 17, 2493; (b) Z. Q. Gao, B. X. Mi, C. H. Chen, K. W. Cheah, Y. K. Cheng, W. -S. Wen, Appl. Phys. Lett., 2007, 90, 123506.
    13.(a) S. O. Jeon, Y. M. Jeon, J. W. Kim, C. W. Lee, M. S. Gong, Synth. Met., 2007, 157, 558; (b) K. S. Kim, Y. M. Jeon, J. W. Kim, C. W. Lee, M. S. Gong, Org. Electron., 2008, 9, 797; (c) K. H. Lee, L. K. Kang, J. Y. Lee, S. Kang, S. O. Jeon, K. S. Yook, J. Y. Lee, S. S. Yoon, Adv. Funct. Mater., 2010, 20, 1345; (d) J. H. Seo, K. H. Lee, B. M. Seo, J. R. Koo, S. J. Moon, J. K. Park, S. S. Yoon, Y. K. Kim, Org. Electron., 2010, 11, 1605.
    14.K. R. Wee, H. C. Ahn, H. JinSon, W. S. Han, J. E. Kim, D. W. Cho, S. O. Kang, J. Org. Chem., 2009, 74, 8472.
    15.(a) B. Ding, W. Zhu, X. Jiang, Z. Zhang, Curr. Appl. Phys., 2008, 8, 573; (b) K. H. Lee, J. N. You, S. Kang, J. Y. Lee, H. J. Kwon, Y. K. Kim, S. S. Yoon, Thin Solid Films, 2010, 518, 6253.
    16.(a) S. H. Lin, F. I. Wu, R. S. Liu, Chem. Commun., 2009, 6961; (b) G. A. Chotana, M. A. Rak, M. R. Smith, J. Am. Chem. Soc., 2005, 127, 10539; (c) T. Hatakeyama, T. Hashimoto, Y. Kondo, Y. Fujiwara, H. Seike, H. Takaya, Y. Tamada, T. Ono, M. Nakamura, J. Am. Chem. Soc., 2010, 132, 10674; (d) G. A. Chotana, B. A. Vanchura, M. K. Tse, R. J. Staples, R. E. Maleczka, M, R. Smith, Chem. Comm., 2009, 5731; (e) T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem., 1995, 60, 7508.
    17. F. B. Gianluca, M. Farinola, F. Naso, R. Ragni, Chem. Commun., 2007, 1003.
    18. (a) V. Bulović, A. Shoustikov, M. A. Baldo, E. Bose, V. G. Kozlov, M. E. Thompson, S. R. Forrest, Chem. Phys. Lett., 1998, 287, 455; (b) C. F. Madigan, V. Bulović, Phys. Rev. Lett., 2003, 91, 247403.
    19.J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bassler, M. Porsch, J. Daub, Adv. Mater., 1995, 7, 551.
    20.(a) R. C. Kwong, M. R. Nugent, L. Michalski, T. Ngo, K. Rajan, Y. -J. Tung, M. S. Weaver, T. X. Zhou, M. Hack, M. E. Thompson, S. R. Forrest, J. J. Brown, Appl. Phys. Lett., 2002, 81, 162; (b) J. -W. Kang, D. -S. Lee, H. -D. Park, J. W. Kim, W. -I. Jeong, Y. -S. Park, S. -H. Lee, K. Go, J. -S. Le, J. -J. Kim, Org. Electron., 2008, 9, 452; (c) H. Morishita, H. Kawamura, C. Hosokawa, U.S. Pat. Appl. Publ., 2007, US20070160905.C. Ganzoring, M. Fujihira, Appl. Phys. Lett., 2000, 77, 4211.
    21.陳金鑫, 黃孝文, OLED-夢幻顯示器(Material and Devices of Dream Displays), 2007,五南圖書 第一版.
    第三章
    1.陳金鑫, 黃孝文, OLED-夢幻顯示器(Material and Devices of Dream Displays), 2007, 第一版.
    2.(a) D. M. Pai, J. F. Yanus, M. Stolka, J. Phys. Chem., 1984, 88, 4714;(b) X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger, Adv. Mater., 2001, 14, 581.
    3.M. Ikai, S. Ichinosawa, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett., 2001, 79, 156.
    4.(a) V. Adamovich, J. Brooks, A. M. Alexander, P. I. Djurovich, B. W. D’Andrade, C. Adachi, S. R. Forrest, M. E. Thompson, New J. Chem., 2002, 26, 1171;(b) R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown, S. Garon, M. E. Thompson, Appl. Phys. Lett., 2003, 82, 2422.
    5.S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, F. Sato, Appl. Phys. Lett., 2003, 83, 569.
    6.(a)Y. Tao, Q. Wang, L. Ao, C. Zhong, J. Qin, C. Yang, D. Ma, J. Mater. Chem., 2010, 20, 1759;(b) Y. Tao, Q. Wang, C. Yang, Q. Wang, Z. Zhang, T. Zou, J. Qin, D. Ma, Angew. Chem. Int. Ed., 2008, 47, 8104
    7.H.-H. Chou, C.-H. Cheng, Adv. Mater., 2010, 22, 2468.
    8.S.-J. Su, C. Cai, J. Kido, Chem. Mater., 2011, 23, 274.
    9.C.-H. Fan, P. Sun, T.-H. Su, C.-H. Cheng, Adv. Mater. 2011, early view.
    10.(a)J. Kido, H. Hayase, K. Kongawa, K. Hagai, K. Okamoto, Appl. Phys. Lett., 1994, 65, 2124;(b) C. Adachi, M. A. Baldo, S. R. Forrest, J. Appl. Phys., 2000, 87, 8049.
    11.(a) M. A. Baldo, D. F. O’ Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 1998, 395, 151;(b) M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature, 2000, 403, 750.
    12.(a) C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. Kwong, Appl. Phys. Lett., 2001, 78, 1622.(b)S. Okada, H. Iwawaki, M. Furugori, S. Kamatani, S. Lgawa, T. Moriyama, S. Miuva, A. Tsuboyama, T. Takiguchi, H. Mizutani, SID Symp. Dig., 2002, 1360.
    13.(a) V. V. Grushin, N. Herron, D. D. LeCloux, W. J. Marshall, V. A. Petrov, Y. Wang, Chem. Commun., 2001, 1494;(b) Y. Wang, N. Herron, V. V. Grushin, D. LeCloux, V. Petrov, Appl. Phys. Lett., 2001, 79, 449.
    14.(a) Y.-J. Su, H.-L. Huang, C.-L. Li, C.-H. Chien, Y.-T. Tao, P.-T. Chou, S. Datta, R.-S. Liu, Adv. Mater. 2003, 15, 884.(b) C. L. Li, Y. J. Su, Y. T. Tao, P. T. Chou, S. Datta, R. S. Liu, Adv. Funct. Mater., 2005, 15, 387.(c) 碩士論文 謝依萍(Yi-Ping Hsieh)2004.
    15.(a)I. R. Laskar,T.-M. Chen, Chem. Mater. 2004, 16, 111;(b) A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc., 2003, 125, 7377.
    16.(a) K.-H. Fang, L.-L. Wu, Y.-T.Huang, C.-H. Yang , I-W. Sun, Inorganica Chimica Acta, 2006, 359, 441;(b) C.-H. Yang, C.-C. Tai, I-W. Sun, J. Mater. Chem., 2004, 14, 947;(c) P. J. Hay, J. Phys. Chem. A, 2002, 106, 1634.
    17.H. Yamanaka, K. Hayashi, T. Sakamoto, Y. Kondo, N. Miura, Heterocycles, 1986, 24, 2311.
    18.M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Gu¨del, Inorg. Chem., 1994, 33, 545.
    19.F. O. Garces, K. A. King, R. J. Watts, Inorg. Chem., 1988, 27, 3464. (b) G. A. Carlson, P. I. Djurovich, R. J Watts, Inorg.Chem., 1993, 32, 4483.
    20.S. Lamansky, P. Djurovich, D. Murphy, F. A. Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, J. Inorg. Chem., 2001, 40, 1704.
    21.S. Lamansky, P. Djurovich, D. Murphy, F. A. Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc., 2001, 123, 4304.
    22.A. Sarkar, C. J. Sankar, Lumin., 1995, 65, 163.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE