簡易檢索 / 詳目顯示

研究生: 何基廷
Ho, Chi-Ting
論文名稱: 預測相變之非監督式學習
Unsupervised Learning Method For Phase Transition Prediction
指導教授: 王道維
Wang, Daw-Wei
口試委員: 洪在明
Hong, Tzay-Ming
陳柏中
Chen, Po-Chung
張明強
Chang, Ming-Chiang
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 41
中文關鍵詞: 相變機器學習非監督式學習
外文關鍵詞: phase transition, machine learning, unsupervised learning
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過學習不同相中的物理量,人們認為機器學習能夠給出其中相變的位置來幫助我們更加了解物理系統. 然而,常見的方法需要預先假設相變的存在,並使用監督式學習來判斷相變。這不太符合實際的情況,因為我們不應該先知道相變是否真的存在,也不應該知道如何為物理量標記它所對應的相。 在這篇論文裡,我們指出了以往監督式學習應用的缺點與問題,並且透過八個不同的測試來驗證它們。

    此外,我們提出了新的非監督式學習方法。在不需要預先假設相變的存在之下,它依然能夠給出精確的相變點。 更特別的是,它有能力區分判斷出的相變點是否為真。這在以往的機器學習方法是不可能做到的。 這代表說我們的方法確實不需要任何的先備知識,並且可以應用在新的多體系統上。


    It has been believed that the phase boundary between two different quantum states can be determined by a machine learning model which is trained by the physical observable in the deep regimes of these two phases. However, the common method may not be reliable because it is still based on a theoretical work that a phase transition must exist somewhere in between. In this work, we indicate several shortcomings of the common method, which is supervised learning technique, and verify them through eight different tests, two physical systems with four kinds of data.

    Besides, we develop a new unsupervised learning method, which can determine phase boundary exactly even without assuming its existence. Moreover, it has an ability to distinguish whether the phase transition really occurs or not, which is impossible for the typical machine learning model. This implies that our approach could be in principle applied to discover new many-body states without any priori theoretical works.

    Abstract Acknowledgements Contents 1 Introduction 1 2 Machine Learning and Phase Boundary Prediction 3 2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Basic Concept . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Fully Connected Neural Network (FCNN) . . . . . . . . . . 4 2.1.3 Convolutional Neural Network (CNN) . . . . . . . . . . . . 5 2.2 Phase Boundary Prediction . . . . . . . . . . . . . . . . . . . . . . 6 3 Motivation 9 3.1 Argument for the Supervised Learning Application . . . . . . . . . 9 3.1.1 Labeling Problem . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.2 Training Data Distribution . . . . . . . . . . . . . . . . . . 10 3.1.3 Influence of Training Range . . . . . . . . . . . . . . . . . . 11 3.2 Criterion for Successful Prediction . . . . . . . . . . . . . . . . . . . 11 4 Physical Systems 13 4.1 1-D SSH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.1 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.2 Topological Phase . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 1-D Kitaev Chain Model . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.1 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.2 Topological Phase . . . . . . . . . . . . . . . . . . . . . . . 18 5 Physical Quantities and Correlation Measurement 20 5.1 Winding Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2 Entanglement Spectrum and Entanglement Entropy . . . . . . . . . 22 5.2.1 Mathematical Formalism . . . . . . . . . . . . . . . . . . . . 22 5.2.2 Calculation from truncated correlation function . . . . . . . 22 5.3 Time-of-Flight Image . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3.1 Basic Assumption . . . . . . . . . . . . . . . . . . . . . . . 24 5.3.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.4 Correlation Function and Density Correlation Function . . . . . . . 27 5.4.1 1-D SSH model . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4.2 1-D Kitaev chain model . . . . . . . . . . . . . . . . . . . . 28 6 Examine the Supervised Learning Method 29 6.1 Predictions under Different Training Ranges . . . . . . . . . . . . . 29 6.2 Results for Different Input Data . . . . . . . . . . . . . . . . . . . . 30 7 Unsupervised Learning Method 32 7.1 Basic Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.2 Structure of our model . . . . . . . . . . . . . . . . . . . . . . . . . 33 8 Results for Unsupervised Learning Method 35 8.1 Predictions under Different Training Ranges . . . . . . . . . . . . . 35 8.2 Results for Different Input Data . . . . . . . . . . . . . . . . . . . . 36 9 Conclusion 38 References 40

    [1] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Polyacetylene, Phys.
    Rev. Lett. 42, 1698 (1979)
    [2] G. Cybenko, Approximation capabilities of multilayer feedforward networks,
    Math. Control Signal Systems 2, 303–314 (1989)
    [3] William D. Phillips, Nobel Lecture: Laser cooling and trapping of neutral
    atoms, Rev. Mod. Phys. 70, 721 (1989)
    [4] Kurt Hornik, Approximation capabilities of multilayer feedforward networks,
    Neural Networks, Volume 4, Issue 2, 251-257 (1991)
    [5] A Yu Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Usp. 44,
    131, (2001)
    [6] Ingo Peschel, Calculation of reduced density matrices from correlation functions,
    J. Phys. A. 36, L205, (2003)
    [7] S. Ryu and Y. Hatsugai, Entanglement entropy and the Berry phase in the
    solid state, Phys. Rev. B 73, 245115 (2006)
    [8] Alexei Kitaev, Periodic table for topological insulators and superconductors,
    AIP Conf.Proc. 1134, 22 (2009)
    [9] Kelvin Ch'ng, Juan Carrasquilla, Roger G. Melko, and Ehsan Khatami,
    Machine Learning Phases of Strongly Correlated Fermions, Phys. Rev. X 7,
    031038 (2017)
    [10] Carrasquilla, J., Melko, R., Machine learning phases of matter, Nat. Phys.
    13, 431 (2017)
    [11] Kenny Choo, Giuseppe Carleo, Nicolas Regnault, and Titus Neupert, Symmetries
    and Many-Body Excitations with Neural-Network Quantum States,
    Phys. Rev. Lett 121, 167204 (2018)
    [12] Pengfei Zhang, Huitao Shen, and Hui Zhai, Machine Learning Topological
    Invariants with Neural Networks, Phys. Rev. Lett 4, 066401 (2018)
    [13] Jurriaan Wouters, Hosho Katsura, and Dirk Schuricht, Exact ground states
    for interacting Kitaev chains, Phys. Rev. B 98, 155119 (2018)
    [14] Elliott, E.R., Krutzik, M.C., Williams, J.R. et al, NASA's Cold Atom Lab
    (CAL): system development and ground test status., npj Microgravity 4, 16
    (2018)
    [15] Benno S. Rem, Niklas Käming, Matthias Tarnowski, Luca Asteria, Nick
    Fläschner, Christoph Becker, Klaus Sengstock and Christof Weitenberg, Identifying
    quantum phase transitions using artificial neural networks on experimental
    data, Nat. Phys. 15, 917 (2019)
    [16] Xiao-Yu Dong, Frank Pollmann, and Xue-Feng Zhang, Machine learning of
    quantum phase transitions, Phys. Rev. B 99, 121104 (2019)
    [17] https://news.cgtn.com/news/2020-04-01/Pet-cat-tests-positive-for-COVID-
    19-virus-in-Hong-Kong-PknxZJhPW0/index.html
    [18] https://www.nobelprize.org/prizes/physics/1997/9945-the-doppler-limit/

    QR CODE