研究生: |
林國鼎 |
---|---|
論文名稱: |
主機板承受隨機振動負載之疲勞壽命分析 |
指導教授: | 葉孟考教授 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 主機板 、隨機振動 、疲勞壽命 、覆晶焊點 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子元件在製造、運輸(Transportation)及操作等過程,易承受由外界環境所引起的隨機振動,造成封裝結構產生剝離及高循環疲勞破壞(High-Cycle Fatigue Failure),進而影響其可靠度。電子元件受振動負載之受損程度與印刷電路板及主機板的彎曲幅度有關,電路板及主機板的彎曲過大,易使與基板連接的焊點(Solder Joint)或底填膠(Underfill)產生應力集中,造成破裂而影響封裝整體結構之可靠度及使用壽命。
本文探討含覆晶晶片之主機板承受隨機振動負載之疲勞壽命,以分析覆晶晶片焊點可靠度為重點,文中以有限單元套裝軟體ANSYS配合實驗探討覆晶(Flip Chip)於主機板上承受隨機振動負載之可靠度,並藉由幾何和材料性質等參數變化,期能提昇整體結構之可靠度。結果顯示主機板承受JEDEC規範之隨機振動負載時,無疲勞破壞發生;覆晶焊點承受隨機振動負載時,疲勞破壞發生在距中性軸最遠之對角線焊點與晶片接合處;增加晶片厚度、底填膠填充角度、底填膠楊氏模數及主機板阻尼比,皆能有效提昇主機板結構之疲勞壽命。
1. 謝宗雍, “電子構裝技術,” http://140.114.18.41/micro/chap10/ch10-1.htm.
2. 郭嘉龍, “半導體封裝工程,” 第一章, 全華科技圖書股份有限公司, 中華民國89年.
3. 陳兆宏, “主機板整合進化論,” 2003. http://lab.digitimes.com.tw/extract/extract.asp?extid=104&gid=20.
4. Yang, Q. J., Lim, G. H., Lin, R. M., Yap, F. F., Pang, H. l. J. and Wang, Z. P., “Experimental Modal Analysis of PBGA Printed Circuit Board Assemblies,” IEEE /CPMT Electronic Packaging Technology Conference, pp. 290-296, 1997.
5. Liu, S. and Ume, I. C., “Vibration Analysis Based Modeling and Defect Recognition for Flip-Chip Solder-Joint Inspection,” ASME Journal of Electronic Packaging, Vol. 124, pp. 221-226, 2002.
6. Pitarresi, J. M., Caletka, D. V., Caldwell, R. and Smith, D. E., “Experimental Modal Analysis and Dynamic Response Prediction of PC Boards With Surface Mount Electronic Components,” ASME Journal of Electronic Packaging, Vol. 113, pp. 244-249, September 1991.
7. Wong, T. L., Stevens, K. K. and Wang, G., “The “Smeared” Property Technology for the FE Vibration Analysis of Printed Circuit Cards,” ASME Journal of Electronic Packaging, Vol. 113, pp. 250-275, September 1991.
8. Barker, D. B., Chen, Y. S. and Dasgupta, A., “Estimating the Vibration Fatigue Life of Quad Leaded Surface Mount Component,” ASME Journal of Electronic Packaging, Vol. 115, pp. 195-200, 1993.
9. Sidharth and Barker, D. B., “Vibration Induced Fatigue Life Estimation of Corner Leads of Peripheral Leaded Components,” ASME Journal of Electronic Packaging, Vol. 118, pp. 244-249, 1996.
10. Suhir, E., “Predicted Fundamental Vibration Frequency of a Heavy Electronic Component Mounted on a Printed Circuit Board,” ASME Journal of Electronic Packaging, Vol. 122, pp. 3-5, 2001.
11. Yang, Q. J., Lim, G. H., Pang, H. L. J. and Wang, Z. P., “Vibration Reliability Test of a PBGA Assembly,” IEEE/CPMT Electronic Packaging Technology Conference, pp. 258-263, 1998.
12. Zhao, Y., Basaran, C., Carwright, A. and Dishongh, T., “Inelastic Behavior of Microelectronics Solder Joints Under Concurrent Vibration and Thermal Cycling,” IEEE Inter Society Conference on Thermal Phenomena, pp. 174-180, 2000.
13. Ghaffarian, R., “Shock and Thermal Cycling Synergism Effects on Reliability of CBGA Assemblies,” IEEE Journal of Electronic Packaging, Vol. 122, pp. 327-333, 2000.
14. Yang, Q. J., Wang, Z. P., Lim, G. H., Pang, J. H. L., Yap, F. F. and Lin, R. M., “Reliability of PBGA Assemblies Under Out-of-Plane Vibration Excitations,” IEEE Transactions on Component and Packaging Technology, Vol. 25, No. 25, pp. 293-300, June 2002.
15. Tu, P. L., Chan, Y. C., Tang, C. W. and Lai, J. K. L., “Vibration fatigue of mBGA solder joint,” IEEE Electronic Components and Technology Conference, pp. 1369-1375, 2000.
16. Lau, J. H., “Solder Joint Reliability of Flip Chip and Plastic Ball Grid Array Assemblies Under Thermal, Mechanical, and Vibration Conditions,” IEEE Transactions on Components, and Manufacturing Technology-Part B, Vol. 19, pp. 728-735, No. 4, 1996.
17. Shetty, S., Lehtinen, V., Dasgupta, A., Halkola, V. and Reinikainen, T., “Fatigue of Chip Scale Package Interconnects Due to Cyclic Bending,” ASME Journal of Electronic Packaging, Vol. 123, pp. 302-308, 2001.
18. Rau, I., Miessner, R., Liebing, G. and Becker, K. F., “Accelerated Testing of Flip Chip Packages Under Dynamic Load,” IEEE Polymers and Adhesives in Microelectronics and Photonics, pp. 349-357, 2001.
19. 鍾為勳, “覆晶構裝承受振動負載之疲勞壽命分析,” 國立清華大學動力機械學系碩士論文, 2003.
20. Li, R. S., “A Methodology for Fatigue Prediction of Electronic Components Under Random Vibration Load,” ASME Journal of Electronic Packaging, Vol. 123, pp. 394-400, 2001.
21. Jih, E. and Jung, W., “Vibration Fatigue of Surface Mount Solder Joints,” IEEE InterSociety Conference on Thermal Phenomena, pp. 246-250, 1998.
22. Wong, T.E., Reed, B.A., Cohen, H. M. and Chu, D. W., “Development of BGA Solder Joint Vibration Fatigue Life Prediction Model,” Electronic Components and Technology Conference, pp.149-154, 1999.
23. Wong, T. E., Palmieri, F. W. and Fenger, H. S., “Under-Filled BGA Solder Joint Vibration Fatigue Damage,” IEEE Inter Society Conference on Thermal Phenomena, pp. 961-966, 2002.
24. Lee, S.W. R. and Lui, B. H. W., “Evaluation of Board Level Reliability of Pb-free PBGA Solder Joints,” IEEE International Symposium on Advanced Packaging Materials, pp. 82-89, 2002.
25. Wong, T. E., Palmieri, F. W., Reed, B. A., Fenger, H. S., Cohen, H. M. and Teshiba, K.T., “Durability/Reliability of BGA Solder Joints under Vibration Environment,” Electronic Components and Technology Conference, pp. 1083-1088, 2000.
26. 江孟儒, “高性能電子構裝之振動應力分析,” 元智大學機械工程學系碩士論文, 2000.
27. Quinones, H., Babiarz, A., “Chip Scale Packaging Reliability,” Int’l Symp on Electronic Materials & Packaging, pp. 398-405, 2000.
28. Pitarresi, J., “Dynamic Modeling and Measurement of Personal Computer Motherboards,” Electronic Components and Technology Conference, pp. 597-603, 2002.
29. Cifuentes, A. O., “Estimating the Dynamic Behavior of Printed Circuit Boards,” IEEE Transactions on Components, packaging, and Manufacturing Technology-Part B: Advanced Packaging, Vol. 17, pp. 69-75, 1994.
30. Low, K. H., Chai, G. B., Lim, T. M. and Sue, S. C., “Comparisons of Experimental and Theoretical Frequencies for Rectangular Plates with Various Boundary Conditions and Added Masses,” International Journal of Mechanical Sciences, Vol. 40, No. 11, pp. 1119-1131, 1998.
31. ANSYS Theory Reference. 000855.Eigth Edition.SAS IP, Inc.
32. Cook, R. D., Malkus, D. S. and Plesha, M. E., “Concepts and Applications of Finite Element Analysis,” Wiley, New York, 1989.
33. Rao, S. S., “Mechanical Vibrations,” Addison-Wesley, Reading, Massachusetts, 1995.
34. ANSYS Element Reference. 000855.Eigth Edition.SAS IP, Inc.
35. Kalpakjian, S. and Schmid, S. R., “Manufacturing Engineering and Technology,” Prentice Hall, New Jersey, 2001.
36. 張昆堯, “在熱循環作用下錫球結構與配置方式對FCOB構裝之可靠度分析,” 國立成功大學工程科學系碩士論文, 2002.
37. JEDEC22-B103-B,“Vibration, Variable Frequency,” JEDEC SOLID STATE TECHNOLOGY ASSOCIATION, pp. 1-7, June 2002.
38. Norton, R. L., “Design of Machinery,” McGraw-Hill, New York, 1992.
39. Steinberg, D. S., “Preventing Thermal Cycling and Vibration Failures in Electronic Equipment, Ch.5,” Wiley, New York, 2001.
40. Steinberg, D. S., “Vibration Analysis for Electronic Equipment,” Wiley, New York, 1973.