研究生: |
林承緯 Lin, Chen-Wei |
---|---|
論文名稱: |
橫向高電壓4H碳化矽雙漂移區金氧半場效電晶體與PN二極體設計與製作 The Design and Fabrication of Lateral High Voltage 4H-SiC two-zone RESUFR MOSFETs and PN Diode |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 碳化矽 、高電壓 、場效電晶體 、橫向功率元件 |
外文關鍵詞: | SiC, High voltage, MOSFET, Lateral power device |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this work, a lateral 4H-SiC two-zone RESURF MOSFET is demonstrated. Compared with the conventional RESURF structure, a two-zone structure improves design optimization for breakdown voltage and on-resistance without causing gate oxide breakdown. In addition, a top lightly doped epitaxial p-layer is used to increase the channel mobility and therefore decrease on-resistance. In device fabrication, a graphite cap is used to reduce surface roughness during implant anneal, and NO anneal is used to reduce oxide/SiC interface traps, which translates into better device performance.
The best achieved on-resistance is 31mΩcm2 for a device with 3μm channel length and 20μm drift region. As for the voltage blocking capability, the best achieved breakdown voltage is 3689V for a device with 5μm channel length and 160μm drift region. The BV is not as high as predicted by simulation. This might be due to the implant activation not being precisely controlled. The best achieved BFOM is 30.7MW/cm2, from a device with 3μm channel length and 20μm drift region. The breakdown voltage is 1254V, and the on-resistance is 63.6mΩcm2.
本論文為製作橫向高電壓4H碳化矽雙漂移區金氧半場效電晶體。比較起傳統RESURF結構,雙漂移區結構在設計崩潰電壓與導通電阻最佳化的同時,改善了閘極氧化層提早崩潰的情形。此外,在基板上磊晶了一層輕摻雜p-layer,用來提高通道遷移率,達到降低導通電阻值的目的。元件製程上,利用在摻雜活化時旋塗石墨層降低表面粗糙度以及一氧化氮回火的方式減少碳化矽與二氧化矽之間的表面缺陷,使其電性上有更好的表現。
量測結果得知,在通道長度3μm、漂移區長度20μm的元件中,其導通電阻最低達到31mΩcm2;崩潰特性方面,在通道長度5μm、漂移區長度160μm的元件中,其崩潰電壓最高達到3689V,但沒有當初模擬所預期來的高,推斷是活化率控制不佳所導致。以BFOM值來說,在通道長度3μm、漂移區長度20μm的元件,最佳值在崩潰電壓為1254V、導通電阻為51.2mΩcm2,其BFOM值為30.7MW/cm2。
[1] R. Powell and L.B. Rowland, “SiC Material-Progress Status and Potential Roadblocks”, IEEE Proceeding, vol. 60, pp 942-955, 2002.
[2] K. Shenai, R.S. Scott, and B.J. Baliga, “Optimum Semiconductors for High-Power Electronics”, IEEE Transactions Electron Device, vol. 36, pp. 1811, 1989.
[3] J.A. Appels and H.M.J. Vas, “HIGH VOLTAGE THIN LAYER DEVICES (RESURF DEVICES)”, IEDM Technology Digital, pp 238, 1979.
[4] K. Chatty, S. Banerjee, T.P. Chow and R.J. Gutmann, “High-Volatge Lateral RESURF MOSFET’s on 4H-SiC”, IEEE Electron Device Letter, vol. 21, pp 356-358, July 2000.
[5] S. Banerjee, K. Chatty, T.P. Chow, and R.J. Gutmann, “Improved high-voltage lateral RESURF MOSFETs in 4H-SiC”, IEEE Electron Device Letter, vol. 22, pp 209–211, May 2001.
[6] M. Okamoto, S. Suzuki, M. Kato, T. Yatsuo, and K. Fukuda, “Lateral RESURF MOSFET Fabricated on 4H–SiC C-Face”, IEEE Electron Device Letter, vol. 25, pp 405–407, 2004.
[7] T. Kimoto, H. Kawano, and J. Suda, “1330 V, 67 mΩ•cm2 4H–SiC (0001) RESURF MOSFET”, IEEE Electron Device Letter., vol. 26, pp. 649–651, 2005.
[8] M. Noborio, Y. Negoro, J. Suda and T. Kimoto, “Reduction of On-Resistance in 4H-SiC Multi-RESURF MOSFETs”, Materials Science Forum. vols. 527-529, pp 1305-1308, 2006.
[9] M. Noborio, J. Suda and T. Kimoto, “4H-SiC Double RESURF MOSFETs with a Record Performance by Increasing RESURF Dose”, Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, 2008.
[10] M. Noborio, J. Suda and T. Kimoto, “1.5kV Lateral Double RESURF MOSFETs on 4H-SiC -C Face”, Materials Science Forum, vols. 615-617, pp 757-760, 2009.
[11] T. Zheleva, I. Levin, D. Habersat, A. Lelis, M. Dautrich, and P. Lenahan, “Structural and Analytical Studies of 4H Silicon Carbide MOSFETs with Thermally Grown Oxides”, Semiconductor Device Research Symposium International, pp. 139-140, 2005.
[12] T. Endo, E. Okuno, T. Sakakibara, and S. onda, “High Channel Mobility of MOSFET Fabricated on 4H-SiC(11-20) Face Using Wet Annealing”, Material Science Forum, vols.615-617, pp 813-816, 2009.
[13] Y. Wang, K. Tang, T. khan, M.K. Balasubramanian, H. Naik, W. Wang, and T.P. Chow, “The Effect of Gate Oxide Processes on the Performance of 4H-SiC MOSFETs and Gate-controlled Diodes”, IEEE Transactions On Electron Device,vol.55, No.8, August 2008.
[14] M. Noborio, J. Suda, and T. kimoto, “4H-SiC MIS Capacitors and MISFETs with Deposited SiNx/SiO2 Stack-Gate Structures”, IEEE Transactions On Electron Devices, vol.55, No.8, August 2008.
[15] M. Noborio, J. Suda and T. Kimoto, “P-Channel MOSFETs on 4H-SiC {0001} and Nonbasal Faces Fabricated by Oxide Deposition and N2O Annealing”, IEEE Transactions On Electron Devices, vol.56, No.9, September 2009.
[16] G. Younes, G. Ferro, C. Jacquier, J. Dazord, Y. Monteil, Applied Surface Science, 207 (2003) 200.
[17] M. Lodzinski, A. Perez-Tomas, O.J. Guy, M. Penny, S. Batcup, O.A Al-Hartomy, P. Dunstan, S. Wilks and P. Igic, “Characterization of MOS Interfaces on Protected and Un-protected 4H-SiC Surfaces”, IEEE International Conference On Microelectronics, May 2008.
[18] Y. Negoro, K. Katsumoto, T. Kimoto, and H. Matsunami, “Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC(0001)”, Journal of Applied Physics, vol.96,No.1, July 2004.
[19] Y. Song, S. Dhar, and L.C. Feldman, ”Modified Deal Grove model for the thermal oxidation of silicon carbide”, Journal of Applied Physics, vol.95, No.9, May 2004.
[20] A. Perez-Tomas, P. Godignon, N. Mestres, and J. Millana, “A field-effect electron mobility model for SiC MOSFETs including high density of traps at the interface ” , Microelectronic Engineering 83, 2006.
[21] H. Linewih, S. Dimitrijev and K.Y. Cheong, “Channel carrier mobility parameters for 4H SiC MOSFETs”, Microelectronics Reliability 43, 2003.
[22] T. Hiyoshi and T. Kimoto, “Elimination of the Major Deep Levels in n- and p-Type 4H-SiC by Two-Step Thermal Treatment”, Applied Physics Express 2, 2009.
[23] Q. Zhang, C. Jonas, A. Agarwal, P. Muzykov, T. Sudarshan, B. Geil and C. Scozzie, “Degradation Mechanisms in SiC Bipolar Junction Transistors”, IEEE Device Research Conference, 2008.