研究生: |
蘇凱農 Su, Kai-Nung |
---|---|
論文名稱: |
自發性光學圖案形成中的碎形維度 Fractal Dimension in Spontaneous Optical Pattern Formations |
指導教授: |
李瑞光
Lee, Ray-Kuang |
口試委員: |
鄭建宗
林元堯 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 33 |
中文關鍵詞: | 調製不穩定 、光學圖案 、碎形 、碎形維度 |
外文關鍵詞: | modulation instability, optical pattern, fractal, fractal dimension |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究討論了自發性光學圖案形成中的碎形維度。我們分析了一個光調製不穩定性現象(Optical Modulation Instability, MI)的實驗結果,並計算出其碎形維度。
我們發現MI產生的光學圖案在低光強度閥值(Threshold)下有自我相似(Self-similarity)結構,可以被視為碎形。
我們計算出點狀MI圖案的盒子維度(Box-counting Dimension)隨著施加在非線性晶體的電壓增加而逐漸下降,不同雷射光強度的下降趨勢一致。另外我們也發現點狀MI圖案的盒子維度隨著時間作小幅度的上下震盪。
This research discussed the fractal dimension in spontaneous optical pattern formations. We calculated the fractal dimension of the optical patterns generated by optical modulation instability (MI).
By calculating the fractal dimension, we found that at low intensity threshold, MI patterns can be regard as fractals due to its self-similar structure.
We also found that as the voltage applied to the nonlinear crystal increases, the fractal dimension decreases. The decreasing rate is equal among different laser beam intensity.
Finally, we found that the fractal dimension of the MI pattern fluctuated over time.
[1] V.I. Bespalov, V.I. Talanov, Filamentary Structure of Light Beams in Nonlinear Liquids, JEPT Letters, 3 (1966) 307.
[2] Y.S. Kivshar, G.P. Agrawal, Optical Solitons, 1st ed., 2003.
[3] 許智穎, 在非立即反應非線性介質中的光調制不穩定性的演變, 物理學系, 中興大學, 2010, pp. 36.
[4] B.B. Mandelbrot., Fractals: Form, Chance and Dimension, 1st ed., W.H.Freeman & Company, 1977.
[5] H.v. Koch, Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire, Archiv för Matemat., Astron. och Fys., 1 (1904) 681-702.
[6] W. Sierpiński, Sur une courbe dont tout point est un point de ramification, C.R. Acad. Sci. Paris, 160 (1915) 302-305.
[7] B.B. Mandelbrot., How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension, Science, New Series, 156 (1967) 636-638.
[8] K. Falconer, Fractal Geometry: Mathematical Foundations and Application., John Wiley & Sons, Ltd, 2003.
[9] M.V. Berrya, S. Kleina, Integer, fractional and fractal Talbot effects, J. Mod. Opt., 43 (1996) 2139-2146.
[10] B.B. Mandelbrot, The fractal geometry of nature, W.H. Freeman, San Francisco, 1983.
[11] K. Falconer, Techniques in fractal geometry, Wiley, New York, 1997.
[12] M.F. Barnsley, Fractals everywhere, Academic Press, Boston, 1988.
[13] Wikipedia, Box counting, http://en.wikipedia.org/wiki/Box_counting.
[14] Wikipedia, Fractal dimension, http://en.wikipedia.org/wiki/Fractal_dimension.
[15] Wikipedia, Fractal, http://en.wikipedia.org/wiki/Fractal_geometry.
[16] G.P. Karman, J.P. Woerdman, Fractal structure of eigenmodes of unstable-cavity lasers, Opt. Lett., 23 (1998) 1909-1911.
[17] J. Theiler, Estimating fractal dimension, J. Opt. Soc. Am. A, 7 (1990) 1055-1073.