簡易檢索 / 詳目顯示

研究生: 洪思遠
Hung, Sz-Yuan
論文名稱: 以all-polymer材料製作壓阻式壓力感測器
Design and fabrication piezoresistive pressure sensor based on all-polymer materials
指導教授: 林唯耕
Lin, Wei-Keng
王本誠
Wang, Pen-Cheng
口試委員: 王本誠
Wang, Pen-Cheng
周文祥
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 79
中文關鍵詞: 導電高分子壓阻式壓力感測器壓阻特性孔洞性結構
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓力感測在各領域上被廣泛使用,如醫學上用於足壓量測、關節壓力分析、義肢配合、牙齒咬合等…方面,由壓力分布量測,可提供醫師指標,協助病患矯正不良姿勢;工業上應用於輪圈和輪胎之壓力分布量測,經由壓力分布量測可以改善輪胎和輪圈之最佳化設計;也可用於機台壓力分布量測,藉由壓力分布量測可協助校正機台;在電子構裝散熱上,接觸面積大小是一個重要因素,透過壓力分布量測,可以觀測散熱模組與熱源是否有密合接觸,做為平整度分析之參考數據,以此改善散熱模組效率。
    傳統壓力感測器造價昂貴且不易大面積製作,高分子材料具備容易加工、價格便宜、環境容忍度佳,本實驗遂以全高分子聚合物為材料,設計出一具備壓阻特性之壓阻式壓力感測器;該感測器為一三明治結構之感測器,由上、下電極和中間之可變電阻層所構成,可變電阻層具備孔洞性結構,當壓力感測器受壓時,可變電阻層受到壓縮,感測器之電阻變小,而當壓力釋放時可變電阻層恢復原狀,感測器之電阻值變大。
    本實驗以一定壓壓力裝置對壓力感測器進行性能測試,測試方式以24.2(kN/m2)為一壓力單位,逐漸增大施加壓力至145.2(kN/m2),同時以三用電錶量測壓力感測器之電阻值,以此觀察壓力感測器之壓阻特性;實驗結果顯示吾人成功設計出全高分子聚合物壓力感測器,該感測器具備〝電阻值隨施加壓力增大而漸小〞之壓阻特性。


    目錄 摘要 i 英文摘要 ii 誌謝 iv 目錄 v 表目錄 vvii 圖目錄 ix 第一章 緒論 1 1-1 導電高分子簡介 1 1-2 導電高分子導電原理 5 1-3 常見之導電高分子 7 1-3.1聚苯胺 7 1-3.2 poly(3,4-二氧乙基噻吩) 11 1-3.3聚吡咯 13 1-4高分子現階段之應用 16 1-5文獻回顧 21 第二章 實驗介紹 33 2-1實驗使用材料 33 2-2實驗量測儀器 34 2-3壓阻式壓力感測器設計原理 39 2-4實驗流程 42 2-4.1製作薄膜電極 42 2-4.2聚合導電高分子聚苯胺(PANI:HCSA) 45 2-4.3製作可變電阻層 47 2-4.4製作壓阻式壓力感測器 51 2-4.5壓阻式壓力感測器性能測試 55 第三章 結果與討論 56 3-1 薄膜電極分析 56 3-1.1薄膜電極片電阻值量測 56 3-1.2薄膜電極UV-VIS-NIR分析 58 3-2壓阻式壓力感測器性能測試 59 3-2.1第一型壓力感測器性能測試 59 3-2.2第二型壓力感測器性能測試 62 3-2.3第三型壓力感測器性能測試 65 3-2.4各類型壓力感測器比較 75 第四章 結論 76 第五章 參考文獻 77

    參考文獻
    [1] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-Emitting Diodes Based on Conjugated Polymers”, Nature, vol. 347, 1990, pp. 539-541.
    [2] Y. Wang, “Research progress on a novel conductive polymer—
    poly(3,4- ethylenedioxythiophene) (PEDOT)”, Journal of Physics, vol. 152, 2009,
    pp.152-161.
    [3] R. Ansari, “Polypyrrole conducting electroactive polymers: synthesis and stability
    studies”, Journal of chemistry, vol. 3, 2006, pp.186-201.
    [4] A. G. MacDiarmid, “"Synthetic metals": A novel role for organic polymers (Nobel lecture)”, Angewandte Chemie-International Edition, vol. 40, 2001, pp. 2581-2590.
    [5] S. Gunes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells”, Chemical Reviews, vol. 107, 2007, pp. 1324-1338.
    [6] C.-Y. Su, A.-Y. Lu, Y.-L. Chen, C.-Y. Wei, P.-C. Wang, and C.-H. Tsai, “Chemically-treated single-walled carbon nanotubes as digitated penetrating electrodes in organic solar cells”, Journal of Materials Chemistry, vol. 20, 2010, pp. 7034-7042.
    [7] N. J. Pinto, I. Ramos, R. Rojas, P.-C. Wang, and A. T. Johnson Jr., “Electric response of isolated electrospun polyaniline nanofibers to vapors of aliphatic alcohols”, Sensors and Actuators B-Chemical, vol. 129, 2008, pp. 621-627.
    [8] S. Brady, K. T. Lau, W. Megill, G. G. Wallace, and D. Diamond, “The Development and Characterisation of Conducting Polymeric-based Sensing Devices”, Synthetic Metals, vol. 154, 2005, pp. 25-28.
    [9] F. G. Souza Jr., R. C. Michel, and B. G. Soares, “A methodology for studying the dependence of electrical resistivity with pressure in conducting composites”, Polymer Testing, vol. 24, 2005, pp. 998-1004.
    [10] E. Ochoteco, J. A. Pomposo, T. Sikora, F. Vidal, F. Martinez, G. Obieta, and H. Grande, “All-plastic distributed pressure sensors: taylor-made performance by electroactive materials design”, Microsystem Technologies, vol. 14, 2007 pp. 1089-1097.
    [11] F. G. Souza Jr., P. Richa, A. de Siervo, G. E. Oliveira, C. H. M. Rodrigues, M. Nele, and J. C. Pinto, “New in situ blends of polyaniline and cardanol bio-resins”, Macromolecular Materials and Engineering, vol. 293, 2008, pp. 675-683.
    [12] F. G. Souza Jr., G. E. Oliveira, C. H. M. Rodrigues, B. G. Soares, M. Nele, and J. C. Pinto, “Natural Brazilian amazonic (curaua) fibers modified with polyaniline nanoparticles”, Macromolecular Materials and Engineering, vol. 294, 2009, pp. 484-491.
    [13] S. Cosnier, “Biosensors based on immobilization of biomolecules by electrogenerated polymer films - New perspectives”, Applied Biochemistry and Biotechnology, vol. 89, 2000, pp. 127-138.
    [14] M. Gerard, A. Chaubey, and B. D. Malhotra, “Application of conducting polymers to
    biosensors”, Biosensors and Bioelectronics, vol. 17, 2002, pp. 345-359.
    [15] H. Peng, L. J. Zhang, C. Soeller, and J. Travas-Sejdic, “Conducting polymers for
    electrochemical DNA sensing”, Biomaterials, vol. 30, 2009, pp. 2132-2148.
    [16] P.-C. Wang, R. E. Lakis, and A. G. MacDiarmid, “Morphology-correlated electrical
    conduction in micro-contact-printed polypyrrole thin films grown by in situ
    deposition”, Thin Solid Films, vol. 516, 2008, pp. 2341-2345.
    [17] J. Su, Q. M. Zhang, P.-C. Wang, A. G. MacDiarmid, and K. J. Wynne, “Preparation and
    characterization of electrostrictive polyurethane films with conductive polymer
    electrodes”, Polymers for Advanced Technologies, vol. 9, 1998, pp. 317-321.
    [18] D. Hohnholz, H. Okuzaki, and A. G. MacDiarmid, “Plastic electronic devices through
    line patterning of conducting polymers”, Advanced Functional Materials, vol. 15,
    2005, pp. 51-56.
    [19] P.-C. Wang, and A. G. MacDiarmid, “Integration of polymer-dispersed liquid crystal
    composites with conducting polymer thin films toward the fabrication of flexible
    display devices”, Displays, vol. 28, 2007, pp. 101-104.
    [20] M. Hussain, Y.-H. Choa, and K. Niihara, “Conductive rubber materials for pressure
    sensor”, Journal of materials science letters, vol. 20, 2001, pp. 525-527.
    [21] R. D. Sherman, L. M. Middleman, and S. M. Jacobs, “Electron transport processes in
    conductor-filled polymers”, Polymer engineering and science, vol. 23, 1983, pp. 36-46.
    [22] G. Harsanyi, “Polymer films in sensor applications: a review of present uses and
    future possibilities”, Sensor review, vol. 20, 2000, pp. 98-105.
    [23] D. Zhou, G. M. Spinks, G. G. Wallace, C. Tiyapiboonchaiya, D. R. MacFarlane, M.
    Forsyth, J. Sun, “Solid state actuators based on polypyrrole and polymer-in-ionic
    liquid electrolytes”, Electrochimica Acta, vol. 48, 2003, pp. 2355-2359.
    [24] C. M. A. Ashruf, “Thin flexible pressure sensors”, Sensor review, vol. 20, 2002,
    pp. 322-327.
    [25] P.-C. Wang, and A. G. MacDiarmid, “Vapor phase secondary doping of polyaniline
    (emeraldine salt) thin film with o-chlorophenol investigated by UV-VIS-NIR: Effect of
    primary dopants, substrate surfaces, and pre-treatments of organic vapors”, Reactive
    & functional polymers, vol. 68,2008, pp. 201-207.
    [26] Y. Wei, K. F. Hsueh, and G.-W. Jang, “A study of leucoemeraldine and the effect of
    redox reactions on the molecular weight chemically prepared polyaniline”,
    Macromolecules, vol. 27, 1994, pp. 518-525.
    [27] 鄭慶祥, 「導電性核殼型高分子材料的合成、分析與應用」
    [28] 王立義, 張復瑜,「機器人仿人皮膚」, 智慧機器人技術專集, 2006, pp. 51-57.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE