簡易檢索 / 詳目顯示

研究生: 鄭新川
論文名稱: Zn1-xMgxO薄膜之單極電阻轉換效應
指導教授: 吳振名
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 104
中文關鍵詞: 氧化鋅電阻轉換溶膠-凝膠燈絲理論
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電阻式記憶體 (RRAM)同時具有讀寫速度快、結構簡單、單元面積小、密度高、低電壓驅動、低耗電、高操作週期及非揮發性等優點,因此近年來許多研究團隊競相投入研發,文獻日益增加,研究的材料也越來越廣泛,從最早的Pr1-xCaxMnO3 (PCMO)到其他的鈣鈦礦材料,以及單元氧化物。然而,ZnO雖然同為常見的單元氧化物材料,卻遲至近兩年才發表純ZnO和摻雜S、Co或Mg的ZnO的RRAM。此外,由於電阻轉換效應的機制尚無定論,因此本研究亦試圖探討電阻轉換效應的原理和機制。
    本論文以溶膠-凝膠法 (sol-gel)將Zn1-xMgxO旋鍍於Pt / TiOx / SiO2 / Si基板上,並以濺鍍法鍍製白金上電極,形成MIM結構之電阻式記憶體,分析微結構、電性和介電等特性,探討摻雜Mg以及不同退火溫度對於電阻轉換效應的影響,並探討電阻轉換的過程。實驗結果發現摻雜Mg有助於增加ZnO原始阻態的阻值,使試片可以在更小的膜厚下產生電阻轉換效應,有助元件微小化。退火溫度會影響試片的原始阻態的電阻,然而並不會影響高、低阻態的大小及阻值比。低阻態的電流傳導行為為歐姆傳導,而高阻態的漏電行為為普爾-法蘭克發射。time evolution的量測可進一步做為燈絲理論的證據。


    第一章 緒論 1 1.1 簡介 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1 氧化鋅簡介 4 2.2 先進非揮發性記憶體簡介 6 2.2.1 鐵電記憶體 6 2.2.2 相變化記憶體 7 2.2.3 磁阻式記憶體 8 2.2.4 電阻式記憶體 9 2.3 電阻轉換效應與量測方式 10 2.3.1 名詞解釋 10 2.3.2 電阻轉換效應的量測方式 11 2.4 電阻轉換效應的機制 13 2.4.1 單極電阻轉換 13 2.4.1.1 焦耳熱效應 13 2.4.1.2 陽離子移動誘導氧化還原反應 15 2.4.1.3 陰離子移動誘導氧化還原反應 16 2.4.2 雙極電阻轉換 16 2.4.2.1 半導體與金屬介面主導 17 2.4.2.2 半導體內部主導 18 2.5 電阻式記憶體材料 20 2.5.1 鈣鈦礦氧化物 20 2.5.2 單元過渡金屬氧化物 22 2.5.3 有機化合物 24 2.6 電流傳導機制與分析方法 25 2.6.1 歐姆傳導 26 2.6.2 蕭基發射 26 2.6.3 普爾-法蘭克發射 28 2.6.4 空間電荷限制電流 30 2.7 金屬/半導體/金屬結構的電容-電壓 31 第三章 實驗流程 48 3.1 試片製備 48 3.1.1 基板 48 3.1.2 溶液製備 48 3.1.3 薄膜旋鍍 49 3.1.4 熱處理 49 3.1.5 鍍製上電極 49 3.2 材料特性分析 50 3.2.1 X光繞射 50 3.2.2 掃描式電子顯微鏡 51 3.3 電性量測 51 3.3.1 電流-電壓量測 51 3.3.2 電流-時間量測 51 3.3.3 電容-電壓和電容-頻率量測 52 第四章 實驗結果與討論 56 4.1 材料結構分析 57 4.1.1 膜厚量測 57 4.1.2 X光繞射分析 58 4.1.3 掃描式電子顯微鏡分析 58 4.2 電性分析 59 4.2.1 不同點之電流-電壓量測 59 4.2.2 耐用度測試 61 4.2.3 電流傳導機制分析 61 4.2.4 電流-時間量測 63 4.3 介電特性分析 65 第五章 結論 95 參考文獻 97 表目錄 表3-1 白金上電極鍍製參數 50 表4-1 12層ZnO和9層Zn0.9Mg0.1O的電壓、電阻統計值 68 表4-2 Zn0.9Mg0.1O在500、600、700℃之退火條件下不同點測量的電壓、電阻統計值 69 表4-3 Zn0.9Mg0.1O在500、600、700℃之退火條件下50次耐久度測試的電壓、電阻統計值 70 圖目錄 圖2-1 氧化鋅的三種晶體結構 [4] 33 圖2-2 纖維鋅礦 (wurtzite) 的晶體結構圖 [4] 33 圖2-3 Pt與ZnO的晶格匹配示意圖 [7] 34 圖2-4 ZnO在不同基板上的結晶XRD圖 [7] 34 圖2-5 P-E電滯特性曲線圖 [7] 35 圖2-6 相變化記憶體之結構及操作原理圖 [7] 35 圖2-7 單位磁阻式記憶體之結構及操作原理圖 [8] 36 圖2-8 整體磁阻式記憶體結構示意圖 [8] 36 圖2-9 (a) 單極 (b) 雙極 電阻轉換之I-V曲線示意圖 [10] 37 圖2-10 EPIR範例 (a)波形的選擇 (b)電阻轉換測量結果 [22,65] 37 圖2-11 I-V sweeping之 (a)I-V圖形 (b)可靠度測試(c)高低阻態之阻值統計 [66] 38 圖2-12 time evolution範例 [13] 39 圖2-13 燈絲之示意圖,紅色代表導通的路徑 [10] (a)為垂直MIM結構,(b)為水平MIM結構 39 圖2-14 介電崩潰在薄膜中產生之樹枝狀路徑 [16] 40 圖2-15 陽離子移動誘導氧化還原反應之示意圖 [10] 40 圖2-16 p型蕭基能障主導之雙極電阻轉換效應 [19] 41 圖2-17 n型蕭基能障主導之雙極電阻轉換效應 [20] 41 圖2-18 蕭基能障在 C-V圖形中之峰值位移情形 [21] 42 圖2-19 不同上電極量測之 I-V圖形 [21] 42 圖2-20 (a)區域載子陷阱模型示意圖(b)施加偏壓下電子佔據比例與時間關係 [22] 43 圖2-21 ZnO RRAM之 (a) I-V圖形,I以線性表示 (b) 100次量測循環之阻值 (c) 高低阻態電流傳導機制分析 [2] 43 圖2-22 Zn0.8Mg0.2O RRAM之 (a) I-V圖形,I以對數表示 (b) 高低阻態電流傳導機制分析 (c) 50次量測循環之阻值 [3] 44 圖2-23 漏電流分類 45 圖2-24 (a) 蕭基發射 和 (b) 普爾-法蘭克發射 之示意圖 [56] 45 圖2-25 SCLC分析範例 [61] 46 圖2-26 金屬-半導體-金屬 (MSM) 之 (a) 結構示意圖 (b) 能帶圖 (c) C-V圖形,左上角為 -1V∼1V的C-V放大圖 [62] 46 圖2-27 (a) Pt/SrTiO3/Pt MSM之C-V圖形 [63] (b) Pt/Pb0.65La0.28Ti0.96O3/Pt MSM之C-V圖形 [64] 47 圖3-1 Zn1-xMgxO溶液製備流程圖 54 圖3-2 試片結構示意圖 54 圖3-3 實驗流程圖 55 圖3-4 I-V量測之電壓對時間示意圖 55 圖4-1 摻雜5%Mg的試片在 (a) 500℃ (b) 600℃ (c) 700℃ 的I-V圖形 (d) 量測上-上電極的示意圖 71∼72 圖4-2 旋鍍ZnO (a) 9層 (b) 12層 和 Zn0.9Mg0.1O (c) 9層 (d) 12層,在空氣氣氛下以700℃退火10分鐘後所量測之I-V圖形 73∼74 圖4-3 (a) Zn0.9Mg0.1O與 (b) ZnO之薄膜截面圖 75 圖4-4 (a) Zn0.9Mg0.1O不同退火溫度的XRD圖形 (b) 不同退火溫度之半高寬 (FWHM)圖形 76 圖4-5 Zn0.9Mg0.1O不同退火溫度的SEM圖形, (a)(b) 500℃、 (c)(d) 600℃、 (e)(f) 700℃ 77 圖4-6 (a)(b) 500℃ (c)(d) 600℃ (e)(f) 700℃ 退火條件下不同點之I-V圖形,電流以對數表示;(a)(c)(e)為所有量測點的高低阻態圖形,(b)(d)(f)為各溫度之其中一個代表性量測點的原始、高、低阻態圖形 78∼80 圖4-7 (a) Vform、Vreset和Vset對溫度之圖形 (b) 0.1 V下計算的原始阻態、低阻態、高阻態和阻值比對溫度之圖形 81 圖4-8 重複量測I-V圖形示意圖 81 圖4-9 高阻態阻值大於原始阻態阻值之I-V圖形 82 圖4-10 500℃耐久度測試之 (a) I-V圖形 (b) Vreset和Vset之分佈情形 (c) 0.1V之高低阻態阻值 (d) 0.5V之高低阻態阻值 83 圖4-11 600℃耐久度測試之 (a) I-V圖形 (b) Vreset和Vset之分佈情形 (c) 0.1V之高低阻態阻值 (d) 0.5V之高低阻態阻值 84 圖4-12 700℃耐久度測試之 (a) I-V圖形 (b) Vreset和Vset之分佈情形 (c) 0.1V之高低阻態阻值 (d) 0.5V之高低阻態阻值 85 圖4-13 (a) 500℃ (b) 600℃ (c) 700℃ 低阻態之I-V曲線,電流以線性表示 86 圖4-14 (a) 500℃ (b) 600℃ (c) 700℃ 高阻態lnI-lnV曲線,以探討SCLC機制 87 圖4-15 (a) 500℃ (b) 600℃ (c) 700℃ 高阻態log(J/T2)對E1/2曲線,以探討蕭基發射機制 88 圖4-16 (a) 500℃ (b) 600℃ (c) 700℃ 高阻態log(J/E)對E1/2曲線,以探討普爾-法蘭克發射機制 89 圖4-17 (a) 600℃ I-V曲線 (I以對數表示)與低阻態不同電壓下的time evolution: (b) 0.5 V (c) 0.9 V (d) 1 V 90 圖4-18 (a) 600℃ I-V曲線 (I以對數表示)與高阻態不同電壓下的time evolution: (b) 2.5 V (c) 2.9 V (d) 3 V (e) 3.1 V 91 圖4-19 原始阻態之 (a) 介電常數-頻率 (b) 不同頻率下電容-電壓 (c) 1kHz下電容-電壓 (d) 1MHz下電容-電壓 圖形 92 圖4-20 高阻態之 (a) 介電常數-頻率 (b) 不同頻率下電容-電壓 (c) 1kHz下電容-電壓 (d) 1MHz下電容-電壓 圖形 93 圖4-21 低阻態之 (a) 電感-頻率 (b) 1kHz下電感-電壓 圖形 94

    [1] M. Villafuerte, S. P. Heluani, G. Juarez et al., "Electric-pulse-induced reversible resistance in doped zinc oxide thin films," Applied Physics Letters 90 (5), 052105 (2007).
    [2] W. Y. Chang, Y. C. Lai, T. B. Wu et al., "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications," Applied Physics Letters 92 (2), 022110 (2008).
    [3] X. Chen, G. Wu, and D. Bao, "Resistive switching behavior ofPt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications," Applied Physics Letters 93 (9), 093501 (2008).
    [4] U. Ozgur, Ya. I. Alivov, C. Liu et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics 98 (4), 041301 (2005).
    [5] T. P. Alexander, T. J. Bukowski, D. R. Uhlmann et al.,
    "Dielectric properties of sol-gel derived ZnO thin films," presented at the Applications of Ferroelectrics, 1996. ISAF '96., Proceedings of the Tenth IEEE International Symposium on, 1996.
    [6] S. Fujihara, C. Sasaki, and T. Kimura, "Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films," Journal of the European Ceramic Society 21 (10-11), 2109 (2001).
    [7] Sang H. Yoon and Dong-Joo Kim, "Effect of substrate on the preferred orientation of ZnO films by chemical solution deposition," Journal of Crystal Growth 303 (2), 568-573 (2007).
    [8] 簡昭欣, 呂正傑, 陳志遠 等, "先進記憶體簡介," 尖端科技 創刊號
    [9] 葉林秀, 李佳謀, 徐明豐 等, "磁阻式隨機存取記憶體技術的發展—現在與未來," 物理雙月刊 廿六卷四期 (2004).
    [10] W. W. Zhuang, W. Pan, B. D. Ulrich et al., "Novell Colossal Magnetoresistive thin film nonvolatile resistance random access memory (RRAM)," International Electron Devices 2002 Meeting, Technical Digest, 193 (2002).
    [11] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nature Materials 6 (11), 833 (2007).
    [12] A. Baikalov, Y. Q. Wang, B. Shen et al., "Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface," Applied Physics Letters 83 (5), 957 (2003).
    [13] "Agilent-4155C handbook-Expand Your Parametric Test Horizons."
    [14] N.A. Chowdhury, G. Bersuker, C. Young et al., "Breakdown characteristics of nFETs in inversion with metal/HfO2 gate stacks," Microelectronic Engineering 85, 27 (2008).
    [15] N. Hwang, T. L. Tan, and C. L. Gan, "Distinction of Intrinsic and Extrinsic Breakdown Failure Modes of Cu/Low-k Interconnects," Proceedings of ESSDERC, Grenoble, France, 273 (2005).
    [16] Y. Sato, K. Kinoshita, M. Aoki et al., "Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model," Applied Physics Letters 90 (3), 033503 (2007).
    [17] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn, "Growth model for filamentary streamers in an ambient field," IEEE Transactions on Dielectrics and Electrical Insulation 10 (1), 73 (2003).
    [18] K. M. Kim, B. J. Choi, B. W. Koo et al., "Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures," Electrochemical and Solid State Letters 9 (12), G343 (2006).
    [19] S. Seo, M. J. Lee, D. H. Seo et al., "Conductivity switching characteristics and reset currents in NiO films," Applied Physics Letters 86 (9), 093509 (2005).
    [20] A. Sawa, T. Fujii, M. Kawasaki et al., "Hysteretic current--voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface," Applied Physics Letters 85 (18), 4073 (2004).
    [21] T. Fujii, M. Kawasaki, A. Sawa et al., "Hysteretic current--voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3," Applied Physics Letters 86 (1), 012107 (2005).
    [22] S. Seo, M. J. Lee, D. C. Kim et al., "Electrode dependence of resistance switching in polycrystalline NiO films," Applied Physics Letters 87 (26), 263507 (2005).
    [23] M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, "Nonvolatile Memory with Multilevel Switching: A Basic Model," Physical Review Letters 92 (17), 178302 (2004).
    [24] L. E. Yu, S. Kim, M. K. Ryu et al., "Structure Effects on Resistive Switching of Al/TiOx/Al Devices for RRAM Applications," Electron Device Letters, IEEE 29 (4), 331 (2008).
    [25] D. Hsu, J. G. Lin, and W. F. Wu, "Resistive switching effects in Nd0.7Ca0.3MnO3 manganite," Journal of Magnetism and Magnetic Materials 310 (2, Part 2), 978 (2007).
    [26] R. Fors, S. I. Khartsev, and A. M. Grishin, "Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition," Physical Review B (Condensed Matter and Materials Physics) 71 (4), 045305 (2005).
    [27] K. Szot, W. Speier, G. Bihlmayer et al., "Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3," Nature Materials 5 (4), 312 (2006).
    [28] M. C. Ni, S. M. Guo, H. F. Tian et al., "Resistive switching effect in SrTiO3/Nb-doped SrTiO3 heterojunction," Applied Physics Letters 91 (18), 183502 (2007).
    [29] Y. Watanabe, J. G. Bednorz, A. Bietsch et al., "Current-driven insulator--conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals," Applied Physics Letters 78 (23), 3738 (2001).
    [30] C. Y. Liu, P. H. Wu, A. Wang et al., "Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film," Electron Device Letters, IEEE 26 (6), 351 (2005).
    [31] C. Y. Liu, C. C. Chuang, J. S. Chen et al., "Memory effect of sol-gel derived V-doped SrZrO3 thin films," Thin Solid Films 494 (1-2), 287 (2006).
    [32] C. Y. Lin, C. C. Lin, C. H. Huang et al., "Resistive switching properties of sol-gel derived Mo-doped SrZrO3 thin films," Surface and Coatings Technology 202 (4-7), 1319 (2007).
    [33] R. Oligschlaeger, R. Waser, R. Meyer et al., "Resistive switching and data reliability of epitaxial (Ba,Sr)TiO3 thin films," Applied Physics Letters 88 (4), 042901 (2006).
    [34] J. Y. Son, Y. H. Shin, and C. S. Park, "Bistable resistive states of amorphous SrRuO3 thin films," Applied Physics Letters 92 (13), 133510 (2008).
    [35] D. Choi, D. Lee, H. Sim et al., "Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications," Applied Physics Letters 88 (8), 082904 (2006).
    [36] B. J. Choi, D. S. Jeong, S. K. Kim et al., "Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition," Journal of Applied Physics 98 (3), 033715 (2005).
    [37] S. Seo, M. J. Lee, D. H. Seo et al., "Reproducible resistance switching in polycrystalline NiO films," Applied Physics Letters 85 (23), 5655 (2004).
    [38] C. Y. Lin, C. Y. Wu, C. Y. Wu et al., "Memory effect of RF sputtered ZrO2 thin films," Thin Solid Films 516 (2-4), 444 (2007).
    [39] R. Dong, D. S. Lee, W. F. Xiang et al., "Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures," Applied Physics Letters 90 (4), 042107 (2007).
    [40] D. Lee, D. J. Seong, I. Jo et al., "Resistance switching of copper doped MoOx films for nonvolatile memory applications," Applied Physics Letters 90 (12), 122104 (2007).
    [41] H. Shima, F. Takano, H. Muramatsu et al., "Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode," Applied Physics Letters 93 (11), 113504 (2008).
    [42] H. Y. Lee, P. S. Chen, T. Y. Wu et al., "Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory," Applied Physics Letters 92 (14), 142911 (2008).
    [43] S. Kim and Y. K. Choi, "Resistive switching of aluminum oxide for flexible memory," Applied Physics Letters 92 (22), 223508 (2008).
    [44] C. Yoshida, M. Kurasawa, Y. M. Lee et al., "Unipolar resistive switching in CoFeB/MgO/CoFeB magnetic tunnel junction," Applied Physics Letters 92 (11), 113508 (2008).
    [45] C. Rohde, B. J. Choi, D. S. Jeong et al., "Identification of a determining parameter for resistive switching of TiO2 thin films," Applied Physics Letters 86 (26), 262907 (2005).
    [46] D. S. Jeong, H. Schroeder, and R. Waser, "Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack," Electrochemical and Solid State Letters 10 (8), G51 (2007).
    [47] R. Jung, M. J. Lee, S. Seo et al., "Decrease in switching voltage fluctuation of Pt/NiOx/Pt structure by process control," Applied Physics Letters 91 (2), 022112 (2007).
    [48] G. S. Park, X. S. Li, D. C. Kim et al., "Observation of electric-field induced Ni filament channels in polycrystalline NiOx film," Applied Physics Letters 91 (22), 222103 (2007).
    [49] M. J. Lee, Y. Park, S. E. Ahn et al., "Comparative structural and electrical analysis of NiO and Ti doped NiO as materials for resistance random access memory," Journal of Applied Physics 103 (1), 013706 (2008).
    [50] S. Karthauser, B. Lussem, M. Weides et al., "Resistive switching of rose bengal devices: A molecular effect?," Journal of Applied Physics 100 (9), 094504 (2006).
    [51] M. Coelle, M. Buechel, and D. M. de Leeuw, "Switching and filamentary conduction in non-volatile organic memories," Organic Electronics 7 (5), 305 (2006).
    [52] F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, "Electronic memory effects in diodes of zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene)," Journal of Applied Physics 102 (8), 083701 (2007).
    [53] 王琮鴻,清華大學碩士論文
    [54] P. Yeh, Optical Waves in Layered Media, Wiley, 1988
    [55] J. Frenkel, "On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors," Physical Review 54 (8), 647 (1938).
    [56] J. G. Simmons, "Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems," Physical Review 155 (3), 657 (1967).
    [57] H. S. Nalwa, Handbook of Thin Film Materials, Volume 3:
    Ferroelectric and Dielectric Thin Films, Academic Press, 2002
    [58] J. R. Yeargan and H. L. Taylor, "The Poole-Frenkel Effect with Compensation Present," Journal of Applied Physics 39 (12), 5600 (1968).
    [59] A. Rose, "Space-Charge-Limited Currents in Solids," Physical Review 97 (6), 1538 (1955).
    [60] P. Mark and W. Helfrich, "Space-Charge-Limited Currents in Organic Crystals," Journal of Applied Physics 33 (1), 205 (1962).
    [61] M. A. Lampert, "Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps," Physical Review 103 (6), 1648 (1956).
    [62] K. M. Kim, B. J. Choi, Y. C. Shin et al., "Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films," Applied Physics Letters 91 (1), 012907-012903 (2007).
    [63] S. M. Sze, D. J. Coleman, and A. Loya, "Current transport in metal-semiconductor-metal (MSM) structures," Solid-State Electronics 14 (12), 1209 (1971).
    [64] K. Morito, T. Suzuki, S. Sekiguchi et al., "Electrical
    characterization of SrTiO3 thin films grown on Nb-doped SrTiO3 single crystals", Japanese Journal of Applied Physics 39 (1), 166 (2000).
    [65] T. M. Shaw, R. B. Laibowitz, D. Beach et al., "The capacitance of Pt/Pb0.65La0.28Ti0.96O3/Pt structures," Applied Physics Letters 68 (21), 3043 (1996).
    [66] R. Dong, Q. Wang, L. Chen et al., "Resistance switching driven by polarity and voltage of electric pulse in Ag/La0.7Ca0.3MnO3/Pt sandwiches," Applied Physics A: Materials Science & Processing 81 (2), 265 (2005).
    [67] H. Y. Lee, P. S. Chen, C. C. Wang et al., "Low-power switching of nonvolatile resistive memory using hafnium oxide," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46 (4B), 2175 (2007).
    [68] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd edition, Prentice Hall, 2001
    [69] 蘇柏榮,清華大學碩士論文

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE