研究生: |
鄭新川 |
---|---|
論文名稱: |
Zn1-xMgxO薄膜之單極電阻轉換效應 |
指導教授: | 吳振名 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 氧化鋅 、電阻轉換 、溶膠-凝膠 、燈絲理論 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電阻式記憶體 (RRAM)同時具有讀寫速度快、結構簡單、單元面積小、密度高、低電壓驅動、低耗電、高操作週期及非揮發性等優點,因此近年來許多研究團隊競相投入研發,文獻日益增加,研究的材料也越來越廣泛,從最早的Pr1-xCaxMnO3 (PCMO)到其他的鈣鈦礦材料,以及單元氧化物。然而,ZnO雖然同為常見的單元氧化物材料,卻遲至近兩年才發表純ZnO和摻雜S、Co或Mg的ZnO的RRAM。此外,由於電阻轉換效應的機制尚無定論,因此本研究亦試圖探討電阻轉換效應的原理和機制。
本論文以溶膠-凝膠法 (sol-gel)將Zn1-xMgxO旋鍍於Pt / TiOx / SiO2 / Si基板上,並以濺鍍法鍍製白金上電極,形成MIM結構之電阻式記憶體,分析微結構、電性和介電等特性,探討摻雜Mg以及不同退火溫度對於電阻轉換效應的影響,並探討電阻轉換的過程。實驗結果發現摻雜Mg有助於增加ZnO原始阻態的阻值,使試片可以在更小的膜厚下產生電阻轉換效應,有助元件微小化。退火溫度會影響試片的原始阻態的電阻,然而並不會影響高、低阻態的大小及阻值比。低阻態的電流傳導行為為歐姆傳導,而高阻態的漏電行為為普爾-法蘭克發射。time evolution的量測可進一步做為燈絲理論的證據。
[1] M. Villafuerte, S. P. Heluani, G. Juarez et al., "Electric-pulse-induced reversible resistance in doped zinc oxide thin films," Applied Physics Letters 90 (5), 052105 (2007).
[2] W. Y. Chang, Y. C. Lai, T. B. Wu et al., "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications," Applied Physics Letters 92 (2), 022110 (2008).
[3] X. Chen, G. Wu, and D. Bao, "Resistive switching behavior ofPt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications," Applied Physics Letters 93 (9), 093501 (2008).
[4] U. Ozgur, Ya. I. Alivov, C. Liu et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics 98 (4), 041301 (2005).
[5] T. P. Alexander, T. J. Bukowski, D. R. Uhlmann et al.,
"Dielectric properties of sol-gel derived ZnO thin films," presented at the Applications of Ferroelectrics, 1996. ISAF '96., Proceedings of the Tenth IEEE International Symposium on, 1996.
[6] S. Fujihara, C. Sasaki, and T. Kimura, "Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films," Journal of the European Ceramic Society 21 (10-11), 2109 (2001).
[7] Sang H. Yoon and Dong-Joo Kim, "Effect of substrate on the preferred orientation of ZnO films by chemical solution deposition," Journal of Crystal Growth 303 (2), 568-573 (2007).
[8] 簡昭欣, 呂正傑, 陳志遠 等, "先進記憶體簡介," 尖端科技 創刊號
[9] 葉林秀, 李佳謀, 徐明豐 等, "磁阻式隨機存取記憶體技術的發展—現在與未來," 物理雙月刊 廿六卷四期 (2004).
[10] W. W. Zhuang, W. Pan, B. D. Ulrich et al., "Novell Colossal Magnetoresistive thin film nonvolatile resistance random access memory (RRAM)," International Electron Devices 2002 Meeting, Technical Digest, 193 (2002).
[11] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nature Materials 6 (11), 833 (2007).
[12] A. Baikalov, Y. Q. Wang, B. Shen et al., "Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface," Applied Physics Letters 83 (5), 957 (2003).
[13] "Agilent-4155C handbook-Expand Your Parametric Test Horizons."
[14] N.A. Chowdhury, G. Bersuker, C. Young et al., "Breakdown characteristics of nFETs in inversion with metal/HfO2 gate stacks," Microelectronic Engineering 85, 27 (2008).
[15] N. Hwang, T. L. Tan, and C. L. Gan, "Distinction of Intrinsic and Extrinsic Breakdown Failure Modes of Cu/Low-k Interconnects," Proceedings of ESSDERC, Grenoble, France, 273 (2005).
[16] Y. Sato, K. Kinoshita, M. Aoki et al., "Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model," Applied Physics Letters 90 (3), 033503 (2007).
[17] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn, "Growth model for filamentary streamers in an ambient field," IEEE Transactions on Dielectrics and Electrical Insulation 10 (1), 73 (2003).
[18] K. M. Kim, B. J. Choi, B. W. Koo et al., "Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures," Electrochemical and Solid State Letters 9 (12), G343 (2006).
[19] S. Seo, M. J. Lee, D. H. Seo et al., "Conductivity switching characteristics and reset currents in NiO films," Applied Physics Letters 86 (9), 093509 (2005).
[20] A. Sawa, T. Fujii, M. Kawasaki et al., "Hysteretic current--voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface," Applied Physics Letters 85 (18), 4073 (2004).
[21] T. Fujii, M. Kawasaki, A. Sawa et al., "Hysteretic current--voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3," Applied Physics Letters 86 (1), 012107 (2005).
[22] S. Seo, M. J. Lee, D. C. Kim et al., "Electrode dependence of resistance switching in polycrystalline NiO films," Applied Physics Letters 87 (26), 263507 (2005).
[23] M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, "Nonvolatile Memory with Multilevel Switching: A Basic Model," Physical Review Letters 92 (17), 178302 (2004).
[24] L. E. Yu, S. Kim, M. K. Ryu et al., "Structure Effects on Resistive Switching of Al/TiOx/Al Devices for RRAM Applications," Electron Device Letters, IEEE 29 (4), 331 (2008).
[25] D. Hsu, J. G. Lin, and W. F. Wu, "Resistive switching effects in Nd0.7Ca0.3MnO3 manganite," Journal of Magnetism and Magnetic Materials 310 (2, Part 2), 978 (2007).
[26] R. Fors, S. I. Khartsev, and A. M. Grishin, "Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition," Physical Review B (Condensed Matter and Materials Physics) 71 (4), 045305 (2005).
[27] K. Szot, W. Speier, G. Bihlmayer et al., "Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3," Nature Materials 5 (4), 312 (2006).
[28] M. C. Ni, S. M. Guo, H. F. Tian et al., "Resistive switching effect in SrTiO3/Nb-doped SrTiO3 heterojunction," Applied Physics Letters 91 (18), 183502 (2007).
[29] Y. Watanabe, J. G. Bednorz, A. Bietsch et al., "Current-driven insulator--conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals," Applied Physics Letters 78 (23), 3738 (2001).
[30] C. Y. Liu, P. H. Wu, A. Wang et al., "Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film," Electron Device Letters, IEEE 26 (6), 351 (2005).
[31] C. Y. Liu, C. C. Chuang, J. S. Chen et al., "Memory effect of sol-gel derived V-doped SrZrO3 thin films," Thin Solid Films 494 (1-2), 287 (2006).
[32] C. Y. Lin, C. C. Lin, C. H. Huang et al., "Resistive switching properties of sol-gel derived Mo-doped SrZrO3 thin films," Surface and Coatings Technology 202 (4-7), 1319 (2007).
[33] R. Oligschlaeger, R. Waser, R. Meyer et al., "Resistive switching and data reliability of epitaxial (Ba,Sr)TiO3 thin films," Applied Physics Letters 88 (4), 042901 (2006).
[34] J. Y. Son, Y. H. Shin, and C. S. Park, "Bistable resistive states of amorphous SrRuO3 thin films," Applied Physics Letters 92 (13), 133510 (2008).
[35] D. Choi, D. Lee, H. Sim et al., "Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications," Applied Physics Letters 88 (8), 082904 (2006).
[36] B. J. Choi, D. S. Jeong, S. K. Kim et al., "Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition," Journal of Applied Physics 98 (3), 033715 (2005).
[37] S. Seo, M. J. Lee, D. H. Seo et al., "Reproducible resistance switching in polycrystalline NiO films," Applied Physics Letters 85 (23), 5655 (2004).
[38] C. Y. Lin, C. Y. Wu, C. Y. Wu et al., "Memory effect of RF sputtered ZrO2 thin films," Thin Solid Films 516 (2-4), 444 (2007).
[39] R. Dong, D. S. Lee, W. F. Xiang et al., "Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures," Applied Physics Letters 90 (4), 042107 (2007).
[40] D. Lee, D. J. Seong, I. Jo et al., "Resistance switching of copper doped MoOx films for nonvolatile memory applications," Applied Physics Letters 90 (12), 122104 (2007).
[41] H. Shima, F. Takano, H. Muramatsu et al., "Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode," Applied Physics Letters 93 (11), 113504 (2008).
[42] H. Y. Lee, P. S. Chen, T. Y. Wu et al., "Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory," Applied Physics Letters 92 (14), 142911 (2008).
[43] S. Kim and Y. K. Choi, "Resistive switching of aluminum oxide for flexible memory," Applied Physics Letters 92 (22), 223508 (2008).
[44] C. Yoshida, M. Kurasawa, Y. M. Lee et al., "Unipolar resistive switching in CoFeB/MgO/CoFeB magnetic tunnel junction," Applied Physics Letters 92 (11), 113508 (2008).
[45] C. Rohde, B. J. Choi, D. S. Jeong et al., "Identification of a determining parameter for resistive switching of TiO2 thin films," Applied Physics Letters 86 (26), 262907 (2005).
[46] D. S. Jeong, H. Schroeder, and R. Waser, "Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack," Electrochemical and Solid State Letters 10 (8), G51 (2007).
[47] R. Jung, M. J. Lee, S. Seo et al., "Decrease in switching voltage fluctuation of Pt/NiOx/Pt structure by process control," Applied Physics Letters 91 (2), 022112 (2007).
[48] G. S. Park, X. S. Li, D. C. Kim et al., "Observation of electric-field induced Ni filament channels in polycrystalline NiOx film," Applied Physics Letters 91 (22), 222103 (2007).
[49] M. J. Lee, Y. Park, S. E. Ahn et al., "Comparative structural and electrical analysis of NiO and Ti doped NiO as materials for resistance random access memory," Journal of Applied Physics 103 (1), 013706 (2008).
[50] S. Karthauser, B. Lussem, M. Weides et al., "Resistive switching of rose bengal devices: A molecular effect?," Journal of Applied Physics 100 (9), 094504 (2006).
[51] M. Coelle, M. Buechel, and D. M. de Leeuw, "Switching and filamentary conduction in non-volatile organic memories," Organic Electronics 7 (5), 305 (2006).
[52] F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, "Electronic memory effects in diodes of zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene)," Journal of Applied Physics 102 (8), 083701 (2007).
[53] 王琮鴻,清華大學碩士論文
[54] P. Yeh, Optical Waves in Layered Media, Wiley, 1988
[55] J. Frenkel, "On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors," Physical Review 54 (8), 647 (1938).
[56] J. G. Simmons, "Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems," Physical Review 155 (3), 657 (1967).
[57] H. S. Nalwa, Handbook of Thin Film Materials, Volume 3:
Ferroelectric and Dielectric Thin Films, Academic Press, 2002
[58] J. R. Yeargan and H. L. Taylor, "The Poole-Frenkel Effect with Compensation Present," Journal of Applied Physics 39 (12), 5600 (1968).
[59] A. Rose, "Space-Charge-Limited Currents in Solids," Physical Review 97 (6), 1538 (1955).
[60] P. Mark and W. Helfrich, "Space-Charge-Limited Currents in Organic Crystals," Journal of Applied Physics 33 (1), 205 (1962).
[61] M. A. Lampert, "Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps," Physical Review 103 (6), 1648 (1956).
[62] K. M. Kim, B. J. Choi, Y. C. Shin et al., "Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films," Applied Physics Letters 91 (1), 012907-012903 (2007).
[63] S. M. Sze, D. J. Coleman, and A. Loya, "Current transport in metal-semiconductor-metal (MSM) structures," Solid-State Electronics 14 (12), 1209 (1971).
[64] K. Morito, T. Suzuki, S. Sekiguchi et al., "Electrical
characterization of SrTiO3 thin films grown on Nb-doped SrTiO3 single crystals", Japanese Journal of Applied Physics 39 (1), 166 (2000).
[65] T. M. Shaw, R. B. Laibowitz, D. Beach et al., "The capacitance of Pt/Pb0.65La0.28Ti0.96O3/Pt structures," Applied Physics Letters 68 (21), 3043 (1996).
[66] R. Dong, Q. Wang, L. Chen et al., "Resistance switching driven by polarity and voltage of electric pulse in Ag/La0.7Ca0.3MnO3/Pt sandwiches," Applied Physics A: Materials Science & Processing 81 (2), 265 (2005).
[67] H. Y. Lee, P. S. Chen, C. C. Wang et al., "Low-power switching of nonvolatile resistive memory using hafnium oxide," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46 (4B), 2175 (2007).
[68] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd edition, Prentice Hall, 2001
[69] 蘇柏榮,清華大學碩士論文