簡易檢索 / 詳目顯示

研究生: 劉人福
Liou, Ren-Fu
論文名稱: 廣域電力系統穩定器設計
Design of Wide-Area Power System Stabilizers
指導教授: 朱家齊
Chu, Chia-Chi
口試委員: 劉志文
洪穎怡
朱家齊
吳有基
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 142
中文關鍵詞: 電力系統穩定器參與因子留數相對增益矩陣粒子群最佳化演算法時滯培德近似方法廣域量測系統
外文關鍵詞: power system stabilizer, participation factor, residue, relative gain matrix, particle swarm optimization, time delay, Pade approximation method, wide-area measurement system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了抑制低頻振盪,傳統的電力系統穩定器僅取用本機信號,因此只能抑制本地振盪,無法有效提升系統區域間的阻尼。近年來,由於廣域量測系統的發展,使發電機組間的迴授控制得以實現。廣域電力系統穩定器的使用可有效抑制區域間的振盪並改善系統阻尼。當本地及廣域阻尼控制器在改善欠阻尼模式的同時也可能導致其他模式之阻尼惡化。為了防止系統的阻尼惡化,本論文對所有阻尼控制器之參數進行協調最佳化設計。
    首先,本論文根據本機參與因子來配置本地電力系統穩定器,然後利用粒子群最佳化演算法協調所有電力系統穩定器參數。第二,本論文根據本機及他機參與因子來配置本地及廣域電力系統穩定器,然後利用粒子群最佳化演算法協調所有電力系統穩定器參數。第三,本論文根據留數及相對增益矩陣分析來配置本地電力系統穩定器,然後利用粒子群最佳化演算法協調所有電力系統穩定器參數。第四,本論文根據留數及相對增益矩陣分析及他機參與因子來配置本地及廣域電力系統穩定器,然後利用粒子群最佳化演算法協調所有電力系統穩定器參數。
    由於廣域阻尼控制器存在時滯現象,在此使用培德近似方法來表示時滯,並以粒子群最佳化演算法協調時滯廣域阻尼控制器之參數,使系統所有阻尼控制器具有良好之抗時滯能力。


    There are mainly two kinds of control technology, local and wide-area, for the damping control in power system. For depressing the low frequency oscillation, the traditional power system stabilizers often utilize the local unit signal that only suppress the local oscillation. Such a system can not promote the regional damping among the power systems. The development of wide-area measuring system in these years has efficiently suppressed the regional oscillation and improved the system damping. However, that may also deteriorate the damping in other modes when the local and wide-area damping controllers are improving under-damping of the power system. This thesis proposes the coordinated optimum design of the control parameters in damping controllers to promote the control efficiency and to prevent the damping of system from deteriorating worse.
    In this thesis, we propose a working flow for disposition of stabilizers and the optimization of its parameters. We dispose the local power system stabilizers by the local participation factors at first. The particle swarm optimization (PSO) was proposed to coordinate the control parameters of all the controllers. Next, the local and wide-area stabilizers are disposed in accordance with the local and global participation factors. The parameters of all stabilizers are coordinated and optimized by PSO as well. Thirdly, the local stabilizers are disposed by the residue and the relative gain matrix analysis accompanied with the optimum parameters by PSO again. At last, the disposition of local and wide-area stabilizers are arranged by the residue, relative gain matrix analysis, and the global participation factors. The parameters are also optimized by PSO.
    The result of this thesis shows that there exists the time delay phenomenon in wide-area damping controllers by using Pade approximation method to express time delay. The proposed working flow for the power system reveals that the wide-area damping controllers can possess good anti-time-delay ability by the optimum parameters from PSO.

    目錄 中文摘要 I 英文摘要 II 目錄 IV 圖目錄 X 表目錄 XVI 第一章 緒 論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 研究成果 5 1.4 論文架構 6 第二章 低頻振盪基本理論介紹 9 2.1 前言 9 2.2 電力系統小信號特徵根分析 10 2.2.1 電力系統線性化 11 2.2.2 特徵理論分析 13 2.3 本機參與因子 15 2.4 留數分析基本原理 17 2.5 粒子群最佳化演算法 18 2.5.1 粒子群最佳化演算法的基本原理 19 2.5.2 粒子群最佳化之數學方法 19 2.5.3 粒子群最佳化演算法的目標函數 21 2.5.4 粒子群最佳化演算法的基本流程 23 2.6 模擬驗證 23 2.6.1 案例1: 兩區四機系統頻域設計 24 2.6.1.1 案例1.1 系統各發電機未配置PSS 24 2.6.1.2 案例1.2 採用參與因子配置本機PSS 27 2.6.2 案例1: 兩區四機系統時域驗證 29 2.6.2.1 案例1.1 系統各發電機未配置PSS 29 2.6.2.2 案例1.2 系統採用參與因子配置本機 (#2G、#3G、 #4G) PSS 31 2.6.3 案例2: 新英格蘭-紐約互聯系統頻域設計 34 2.6.3.1 案例2.1 系統各發電機未配置PSS 34 2.6.3.2 案例2.2 根據參與因子配置本機PSS 36 2.6.4 案例2: 新英格蘭-紐約互聯系統時域驗證 39 2.6.4.1 案例2.1 系統各發電機未配置PSS 39 2.6.4.2 案例2.2 根據參與因子配置PSS 41 2.7 本章結論 43 第三章 廣域量測系統 44 3.1 前言 44 3.2 全球定位系統 45 3.2.1 相量量測單元 46 3.2.2 廣域測量系統 46 3.3 他機參與因子 48 3.3.1 速度-速度參與因子 49 3.3.2 速度-電壓調整器輸出參與因子 50 3.4 廣域PSS之輸出位置與輸入訊號選取與參數最佳化 51 3.5 模擬驗證 52 3.5.1 案例1: 兩區四機系統頻域設計 53 3.5.2 案例1: 兩區四機系統時域驗證 57 3.5.3 案例2: 新英格蘭-紐約互聯系統頻域設計 59 3.5.4 案例2: 新英格蘭-紐約互聯系統時域驗證 63 3.6 本章結論 65 第四章 相對增益矩陣(RGA)分析 66 4.1 前言 66 4.2 相對增益矩陣方法簡介 66 4.3 相對增益矩陣理論分析 68 4.3.1 相對增益矩陣的定義 68 4.3.2 相對增益矩陣的性質 72 4.3.3 相對增益矩陣與留數分析之應用 72 4.4 模擬驗證 74 4.4.1 案例1: 兩區四機系統頻域設計 74 4.4.1.1 案例1.4系統採用留數及RGA分析配置本機PSS (#2G、#3G) 75 4.4.1.2 案例1.5系統採用留數及RGA分析配置本機PSS (#2G、#3G)並以他機參與因子配置廣域PSS(#2G→#1G) 80 4.4.2 案例1: 兩區四機系統時域驗證 83 4.4.2.1 案例1.4系統採用留數及RGA分析配置本機PSS (#2G、#3G) 83 4.4.2.2 案例1.5系統採用留數及RGA分析配置本機PSS (#2G、#3G)並以他機參與因子配置廣域PSS(#2G→#1G) 86 4.4.3 案例2: 新英格蘭-紐約互聯系統頻域設計 91 4.4.3.1 案例2.4系統採用留數及RGA分析配置本機PSS 91 4.4.3.2 案例2.5系統採用留數及RGA分析配置本機PSS 並以他機參與因子配置廣域PSS 95 4.4.4 案例2 : 新英格蘭-紐約互聯系統時域驗證 99 4.4.4.1 案例2.4系統採用留數及RGA分析配置本機PSS 99 4.4.4.2 案例2.5系統採用留數及RGA分析配置本機PSS 並以他機參與因子配置廣域PSS 102 4.5 本章結論 107 第五章 廣域量測系統之時滯協調控制 109 5.1 考量廣域量測系統的時滯 109 5.2 模擬驗證 111 5.2.1 案例1: 兩區四機系統頻域設計 112 5.2.1.1 案例1.6 系統採用本機與廣域PSS(含時滯項) 112 5.2.2 案例1: 兩區四機系統時域驗證 114 5.2.2.1 案例1.6系統採用本機與廣域PSS(含時滯項) 115 5.3 本章結論 118 第六章 結論與未來研究方向 119 6.1 結論 119 6.2 未來研究方向 120 參考文獻: 121 附錄1 系統參數 125 附錄1.1 兩區四機系統參數 125 附錄1.2 五區十六機系統參數 127 附錄2 系統參數對照表 135

    參考文獻:
    [1]G. Roger, Power System Oscillations, Kluwer Academic, 2000.
    [2]M. Klein, G. J. Rogers, and P. Kiindur, “A Fundamental Study of Inter-Area Oscillations in Power Systems,” IEEE Trans. on Power Systems, vol. 6, no.3, pp. 914-921, Aug 1991.
    [3]Francisco P. Demello, and Charles Concordia, “Concepts of Synchronous Machine Stability as Affected by Excitation Control,” IEEE Trans. on Power Systems, vol. PAS-88, no. 4, pp. 316–329, April 1969.
    [4]A. Hasanovic, A. Feliachi, N. Bhatt, and A. DeGroff, “Practical Robust PSS Design Through Identification of Low-Order Transfer Functions,” IEEE Trans. on Power Systems, vol. 19, no. 3, pp. 1492–1500, Aug 2004.
    [5]M. Aboul-Ela, A. Sallam, J. McCalley, and A. Fouad, “Damping Controller Design for Power System Oscillations Using Global Signals,” IEEE Trans. on Power Systems, vol. 11, no. 2, pp. 767–773, May 1996.
    [6]Balarko Chaudhuri, Rajat Majumder, and Bikash C. Pal, “Wide-Area Measurement-Based Stabilizing Control of Power System Considering Signal Transmission Delay,” IEEE Trans. on Power Systems, vol. 19, no. 4, pp. 1971-1979, Nov 2004.
    [7]J. Chow, J. Sanchez-Gasca, H. Ren, and S. Wang, “Power System Damping Controller Design Using Multiple Input Signals,” IEEE Control Syst. Mag, vol. 20, pp. 82–90, Aug 2000.
    [8]I. Kamwa, R. Grondin, and Y. Hebert, “Wide-Area Measurement Based Stabilizing Control of Large Power Systems-A Decentralized/Hierarchical Approach,” IEEE Trans. on Power Systems, vol. 16, no.1, pp. 36–153, Feb 2001.
    [9]Jin Ma, Pu Zhang, Hong-jun Fu, Bo Bo, and Zhao-yang Dong, “Application of Phasor Measurement Unit on Locating Disturbance Source for Low-Frequency Oscillation,” IEEE Transactions on Smart Grid, vol. 1, no. 3, pp. 340-346, Dec 2010.
    [10]Lennart Angquist, and Carlos Gama, “Damping Algorithm based on Phasor Estimation ,” IEEE Trans. on Power Systems, vol. 1, no. 3, pp. 1160-1165, Dec 2001.
    [11]Yang Zhang, and Anjan Bose, “Design of Wide-Area Damping Controllers for Interarea Oscillations,” IEEE Trans. on Power Systems, vol. 23, no. 3, pp. 1136-1143, Aug 2008.
    [12]L. Rouco, and F.L. Pagola, “An Eigenvalue Sensitivity Approach to Location and Controller Design of Controllable Series Capacitors for Damping Power System Oscillations,” IEEE Trans. on Power Systems, vol. 12, no. 4, pp. 136–153, Nov 1997.
    [13]F. Luis Pagola, Ignacio J. Pkrez-Arriaga, and George C. Verghese, “On Sensitivities , Residues and Participations : Application to Oscillatory Stability Analysis and Control,” IEEE Trans. on Power Systems, vol. 4, no. 1, pp. 278-285, Feb 1989.
    [14]P. Kundur, Power System Stability and Control. New York: McGraw-Hill, 1993.
    [15]X. Yang, A. Feliachi, and K. Adapa, “Damping Enhancement in the Wertern US Power System: A Case Study,” IEEE Trans. on Power Systems, vol. 10, no. 3, pp. 1271-1278, Aug 1995.
    [16]N. Martins and L. T. G. Lima, “Determination of Suitable Locations for Power System Stabilizers and Static VAR Compensators for Damping Electromechanical Oscillations in Large Scale Power Systems,” IEEE Trans. on Power Systems, vol. 5, no. 4, pp. 1455–1469, Nov 1990.
    [17]Michael J. Gibbard, Nelson Martins, Juan J. Sanchez-Gasca, Naoyuki Uchida, Vijay Vittal, and Lei Wang, “Recent Applications of Linear Analysis Techniques,” IEEE Trans. on Power Systems, vol. 16, no. 1, pp. 154-162, Feb 2001.
    [18]Hiroshi Okamoto, Atsushi Kurita, and Yasuji Sekine, “A Method for Identification of Effective Locations of Variable Impedance Apparatus on Enhancement of Steady-State Stability in Large Scale Power Systems,” IEEE Trans. on Power Systems, vol. 10, no. 3, pp. 1401-1407, Aug 1995.
    [19]Yuan-Yih Hsu , and Chern-Lin Chen,“Identification of Optimum Location for Stabilizer Applications Using Participation Factors,” IEE Proceeding, vol. 134, Pt. C, no. 3, pp. 238-244, May 1987.
    [20]G .C. Verghese, I.J. Perez-Arriaga, and F.C. Schweppe, “Selective Modal Analysis with Application to Electric Power Systems, Part II: The Dynamic Stability Problem,” IEEE Trans. on Power Systems, vo1. PAS-101, no. 9, pp. 3126-3134, Sep 1982.
    [21]E.Z. Zhout, O.P. Malik, and G.S. Hope, “Theory and Method for Selection of Power System Stabilizer Location,” IEEE Transactions on Energy Conversion, vol. 6, no. 1, pp. 170-176, Mar 1991.
    [22]E. H. Bristol, “On a New Measure of Interaction for Multivariable Process Control,” IEEE Trans. Automatic. Control, vol. AC-11, pp. 133–134, Jan 1966.
    [23]P. Zhang, A. R. Messina, A. Coonick, and B. J. Cory, “Selection of Locations and Input Signals for Multiple SVC Damping Controllers in Large Scale Power Systems,” in Proc. IEEE Power Eng. Soc. Winter Meeting, vol. 1, pp. 667–670, Feb 1999.
    [24]Jovica V. Milanovic´, and Alfonso C. Serrano Duque, “Identification of Electromechanical Modes and Placement of PSSs Using Relative Gain Array,” IEEE Trans. on Power Systems, vol. 19, no. 1, pp. 410–417, Feb 2004.
    [25]J. V. Milanovic and A. S. Duque, “The Use of Relative Gain Array for Optimal Placement of PSSs,” in Proc. IEEE Power Eng. Soc. Winter Meeting, vol. 3,pp. 992-996, Jan. 28-Feb. 1 2001.
    [26]D. R. Ostojic, “Stabilization of Multi Modal Electromechanical Oscillations by Coordinated Application of Power System Stabilizers,” IEEE Trans. on Power Systems, vol. 6, pp. 1439–1445, Nov 1991.
    [27]M. M. Farsangi, Y. H. Song, and Kwang Y. Lee, “Choice of FACTS Device Control Inputs for Damping Interarea Oscillations,” IEEE Trans. on Power Systems, vol. 19, no. 2,pp. 1135-1143, May 2004.
    [28]L. Zhang, P.X. Zhang, H.F. Wang, Z. Chen, W. Du, Y.J. Cao and S.J. Chen, “Interaction Assessment of FACTS Control by RGA for the Effective Design of FACTS Damping Controllers,” IEE Proc.-Gener. Transm. Distrib, vol. 153, no. 5, pp. 610-616, Sep 2006.
    [29]Zwe-Lee Gaing,“A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System,” IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 19-22, Jun 2004.
    [30]Kennedy J, Eberhart R C. “Particle Swarm Optimization,” IEEE Internation Conference on Neural Networks, vol. 4, pp. 1942-1948, Nov. 27-Dec. 1 1995.
    [31]Abolfazl Jalilvand, Amin Safari, Reza Aghmasheh, “Design of State Feedback Stabilizer for Multi Machine Power System Using PSO Algorithm,” Proceedings of the 12th IEEE International Multitopic Conference, pp. 17-23, Dec 2008.
    [32]M. A. Abido, “Optimal Design of Power–System Stabilizers Using Particle Swarm Optimization,” IEEE Transactions on Energy Conversion, vol. 17, no. 3, pp. 406-413, Sep 2002.
    [33]Jonathan William Stahlhut, Timothy James Browne, Gerald Thomas Heydt, and Vijay Vittal, “Latency Viewed as a Stochastic Process and its Impact on Wide Area Power System Control Signals,” IEEE Trans. on Power Systems, vol. 23, no. 1, pp. 84–91, Feb 2008.
    [34]Nilanjan Ray Chaudhuri, Swakshar Ray, Rajat Majumder, and Balarko Chaudhuri, “A New Approach to Continuous Latency Compensation With Adaptive Phasor Power Oscillation Damping Controller (POD),” IEEE Trans. on Power Systems, vol. 25, no. 2, pp. 1939-1946, May 2010.
    [35]W. Hongxia, N. Hui, and G. T. Heydt, “The Impact of Time Delay on Robust Control Design in Power Systems,” in Proc. IEEE Power Eng. Soc. Winter Meeting, vol. 2, pp. 1511–1516, Jan 2002.
    [36]Chun-xia Dou, Xing-zhong Zhang, Shi-liang Guo, and Cun-Cun Mao, “Delay-Independent Excitation Control for Uncertain Large Power Systems Using Wide-Area Measurement Signals,” Int J Electrical Power and Energy Systems , vol. 32 , pp. 210–217, 2010.
    [37]N.R. Chaudhuri, B. Chaudhuri, S. Ray, and R. Majumder, “Wide-Area Phasor Power Oscillation Damping Controller: A New Approach to Handling Time-Varying Signal Latency,” IET Gener. Transm. Distrib, vol. 4, Iss. 5, pp. 620–630, 2010.
    [38]N.R. Chaudhuri, B. Chaudhuri, A. Domahidi, R. Majumder, S. Ray, P. Korba, and K. Uhlen, “Wide-Area Power Oscillation Damping Control in Nordic Equivalent System,” IET Gener. Transm. Distrib, vol. 4, Iss. 10, pp. 1139–1150, 2010.
    [39]G. Roger, Power System Toolbox, Cherry Tree Scientific Software, 1991 - 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE