研究生: |
徐子珺 Hsu, Tzu-Chun |
---|---|
論文名稱: |
CIGSSe薄膜太陽能電池光學特性檢測與EQE 分析 Optical Characteristics and EQE Analysis of CIGSSe Thin Film Solar Cells |
指導教授: |
甘炯耀
Gan, Jon-Yiew |
口試委員: |
賴志煌
徐偉倫 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 銅銦鎵硒 、銅銦鎵硒硫 、太陽能電池 、橢圓儀 、歐傑電子能譜儀 、縱深分析 、外部量子效率 |
外文關鍵詞: | CIGS, CIGSSe, Ellipsometer, AES, DepthProfile, SolarCell, EQE |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銅銦鎵硒硫(CIGSSe)薄膜太陽能電池是近年來非常受到看好的太陽能電池,擁有可沉積在撓曲基板上、較少的材料使用量與優秀的效率表現等優點。這類的薄膜太陽能電池中,如何提升Jsc(短路電流)是一項重要的議題,外部量子效率 (EQE)是量測Jsc的重要方法,影響EQE表現的因素包括太陽能電池的光電流產生與載子收集,本實驗欲針對光電流產生的部分進行探討,並嘗試進行CIGSSe太陽能電池EQE表現的擬合。
光電流產生與材料的光學係數有密不可分的關係,現今還未有針對CIGSSe吸收層薄膜的成分的吸收係數研究,本實驗從歐傑電子能譜儀(AES)縱深分析著手,求得能隙與GGI[Ga/(Ga+In)]對縱深分佈的關係,結合文獻中CIGS介電常數的研究,求得CIGSSe薄膜各成分的介電常數,進一步計算出其光學常數與吸收係數,分析薄膜成分分佈與光電流產生情形。
除了吸收層以外,本實驗利用橢圓儀來量測窗口層與緩衝層的光學性質,橢圓儀具有非破壞性、高精確度、量測快速等優點,利用橢圓儀量測到的光偏振性變化,建構出樣品的光學模型與介電方程式,以此求出窗口層與緩衝層的光學常數。藉由上述的各層薄膜光學特性與前太陽能電池表面、背電極的光反射量測,擬合出太陽能電池EQE的表現。藉由擬合的方式得到太陽能電池的EQE,並分析其中各膜層光損耗與光吸收數值。
Copper indium gallium selenide (CIGSSe) thin film solar cells are very promising solar cells in recent years. They have the advantage of being able to deposit on flexible substrates, less material usage and excellent efficiency. In such thin film solar cells, how to improve JSC (short circuit current) is an important issue. External quantum efficiency (EQE) is an important method for measuring Jsc. Factors affecting EQE performance include generation rate and collection probability. This research is to explore the part of the generation rate and try to simulate the EQE performance of the CIGSSe solar cell.
The light generated current is directly related to the optical coefficient of the material. There is no research about the absorption coefficient of the CIGSSe absorber layer. This research starts with the depth profile analysis of the Auger electron spectroscopy (AES) to find the energy gap distribution of CIGSSe. The relationship between GGI[Ga/(Ga+In)] and the depth profile, combined with the study of the CIGS dielectric constant in the literature, was used to determine the dielectric constant of each component of the CIGSSe. The optical constant and absorption coefficient were further calculated, and the composition distribution of the film and the light generated current were analyzed.
In addition to the absorber layer, this research uses an ellipsometer to measure the optical properties of the window layer and the buffer layer. The ellipsometer has the advantages of non-destructive, high precision, fast measurement. The optical model and dielectric equation of the sample were constructed by measuring the change of polarization by the ellipsometer. The optical constants of the window layer and the buffer layer are obtained. The solar cell EQE was simulated by the optical properties of the respective layers mentioned above and the light reflection by front solar cell surface and the back electrode were measured by UV-vis. The EQE of the solar cell was obtained, and the optical loss and gain of each mechanism were analyzed.
1. Nakamura, M., et al. Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with a new world record efficacy of 23.35%. in 46th IEEE PVSC. 2019. Chicago, IL.
2. Lewerenz, H.-J. and H. Jungblut, Photovoltaik: Grundlagen und anwendungen. 2013: Springer-Verlag.
3. Polman, A., et al., Photovoltaic materials: Present efficiencies and future challenges. Science, 2016. 352(6283).
4. Yoshikawa, K., et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2017. 2(5).
5. Benick, J., et al., High-efficiency n-type HP mc silicon solar cells. IEEE journal of photovoltaics, 2017. 7(5): p. 1171-1175.
6. Green, M.A., et al., Solar cell efficiency tables (version 54). Progress in Photovoltaics: Research and Applications, 2019. 27(7): p. 565-575.
7. Lee, T.D. and A.U. Ebong, A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews, 2017. 70: p. 1286-1297.
8. Kessler, F. and D. Rudmann, Technological aspects of flexible CIGS solar cells and modules. Solar Energy, 2004. 77(6): p. 685-695.
9. Ramanujam, J. and U.P. Singh, Copper indium gallium selenide based solar cells–a review. Energy & Environmental Science, 2017. 10(6): p. 1306-1319.
10. Rudmann, D., et al., Na incorporation into Cu (In, Ga) Se 2 for high-efficiency flexible solar cells on polymer foils. Journal of Applied Physics, 2005. 97(8).
11. Niki, S., et al., CIGS absorbers and processes. Progress in Photovoltaics: Research and Applications, 2010. 18(6): p. 453-466.
12. Assmann, L., et al., Study of the Mo thin films and Mo/CIGS interface properties. Applied Surface Science, 2005. 246(1-3): p. 159-166.
13. Yoon, J.-H., et al., High-temperature stability of molybdenum (Mo) back contacts for CIGS solar cells: a route towards more robust back contacts. Journal of Physics D: Applied Physics, 2011. 44(42).
14. Scofield, J.H., et al., Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin solid films, 1995. 260(1): p. 26-31.
15. Jackson, P., et al., High quality baseline for high efficiency, Cu (In1− x, Gax) Se2 solar cells. Progress in Photovoltaics: Research and Applications, 2007. 15(6): p. 507-519.
16. Nagoya, Y., et al., Role of incorporated sulfur into the surface of Cu (InGa) Se2 thin-film absorber. Solar Energy Materials and Solar Cells, 2001. 67(1-4): p. 247-253.
17. Wei, S.H. and A. Zunger, Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys. Journal of Applied Physics, 1995. 78(6): p. 3846-3856.
18. Ibdah, A.-R., Optical physics of Cu (In, Ga) Se2 solar cells and their layer components. 2017.
19. Jäger, K.-D., et al., Solar Energy: Fundamentals, Technology and Systems. 2016: UIT Cambridge.
20. C.B.Honsberg and S.G.Bowden. Photovoltaics Education Website. Available from: https://www.pveducation.org/.
21. Augusto, A., et al., Analysis of the recombination mechanisms of a silicon solar cell with low bandgap-voltage offset. Journal of Applied Physics, 2017. 121(20).
22. Green, M.A., Solar cell fill factors-general graph and empirical expressions. Solid State Electronics, 1981. 24: p. 788.
23. S.Hofmann, Depth Profiling, in Encyclopedia of Materials : Science and Technology (Second Edition), K.H.J. Buschow, et al., Editors. 2001. p. 2078-2089.
24. Jung Jang, Y., et al., Quantitative Analysis and Band Gap Determination for CIGS Absorber Layers Using Surface Techniques. Vol. 2018. 2018. 1-9.
25. Kim, M.J., et al., Detection of Matrix Elements and Trace Impurities in Cu(In, Ga)Se2 Photovoltaic Absorbers Using Surface Analytical Techniques. Journal of Nanoscience and Nanotechnology, 2015. 15(10): p. 7722-7726.
26. Chirilă, A., et al., Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nature Materials, 2013. 12: p. 1107.
27. Yoon, J.-H., T.-Y. Seong, and J.-h. Jeong, Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells. Progress in Photovoltaics: Research and Applications, 2013. 21(1): p. 58-63.
28. Jang, J.S., et al., Accurate quantification of Cu(In,Ga)Se2 films by AES depth profiling analysis. Applied Surface Science, 2013. 282: p. 777-781.
29. Loubat, A., et al., Chemical engineering of Cu(In,Ga)Se2 surfaces: An absolute deoxidation studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy signatures. Thin Solid Films, 2017. 633: p. 87-91.
30. Lee, J., et al., Improved quantitative analysis of Cu(In,Ga)Se2 thin films using MCs+-SIMS depth profiling. Applied Physics A, 2014. 115(4): p. 1355-1364.
31. Marcus, H.L., Auger Electron Spectroscopy, in Encyclopedia of Materials: Science and Technology, K.H.J. Buschow, et al., Editors. 2001, Elsevier: Oxford. p. 393-398.
32. Harris, L.A., Analysis of Materials by Electron‐Excited Auger Electrons. Journal of Applied Physics, 1968. 39(3): p. 1419-1427.
33. Bär, M., et al., Determination of the band gap depth profile of the penternary Cu(In(1−X)GaX)(SYSe(1−Y))2 chalcopyrite from its composition gradient. Journal of Applied Physics, 2004. 96(7): p. 3857-3860.
34. Dhingra, A. and A. Rothwarf. Computer simulation and modeling of the graded bandgap CuInSe/sub 2CdS solar cell. in Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference-1993 (Cat. No. 93CH3283-9). 1993. IEEE.
35. Contreras, M.A., et al. High efficiency Cu (In, Ga) Se/sub 2/-based solar cells: processing of novel absorber structures. in Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC). 1994. IEEE.
36. Madelung, O., Numerical data and functional relationships in science and technology: crystal and solid state physics. semiconductors. special systems and topics, comprehensive index for III/17a··· i. 1985: Springer-Verlag.
37. Fujiwara, H., Spectroscopic ellipsometry: principles and applications. 2007, Chichester, England: John Wiley & Sons.
38. Hecht, E., Optics. 4th edition ed. 2002, San Francisco: Addison Wesley.
39. Jones, R.C., A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus. Journal of the Optical Society of America, 1941. 31(7): p. 488-493.
40. J.A. Woollam Co., I., Complete EASE software manual
2011.
41. Hilfiker, J., S. R.A, and H.G. Tompkins, Spectroscopic ellipsometry methods for thin absorbing coatings. 2008. 511-516.
42. An, I., et al., Handbook of Ellipsometry, ed. H.G. Tompkins and E.A. Irene. 2005, Norwich, NY: William Andrew Publishing. xiii-xiv.
43. Ibdah, A.-R.A., et al., Optical simulation of external quantum efficiency spectra of CuIn1− xGaxSe2 solar cells from spectroscopic ellipsometry inputs. Journal of energy chemistry, 2018. 27(4): p. 1151-1169.