簡易檢索 / 詳目顯示

研究生: 邱灝軒
Hao-Hsuan Chiu
論文名稱: IEEE P1500基礎之SOC內嵌Delay Fault測試架構
IEEE P1500 based SOC Delay Fault Testing Architecture
指導教授: 張慶元
Tsin-Yuan Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 57
中文關鍵詞: 系統晶片測試延遲誤失測試測試包裝可測試設計
外文關鍵詞: SoC, Testing, Delay-Fault Testing, Test Wrapper, DFT
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    隨著製程的演進,單一晶片上所能擁有的電晶體數目隨著晶片面積的增加以及最小長度的縮短而呈現非常快速的成長趨勢,製造一個上擁有數百萬至千萬的電晶體數目的晶片已不再是困難的事情。我們現在可以將一個完整的系統放入單一晶片的內部,這就是所謂的系統晶片(System On Chip)。以這樣的設計方法一個系統將可以被快速的建立。而在這樣的方法中,產生了兩個相對應的腳色,核心提供者(core provider)以及核心使用者(core user)。核心提供者提供設計好可以重新使用的核心,而核心使用者整合各個核心使其成立一個系統。這樣的設計概念衍生出的問題是如何對一個這樣的系統整合各個核心的測試資訊以及施行生產測試。目前已有數個為了解決核心測試整合時的問題的標準被提出來,希望能夠將低核心測試整合時的問題與所需要的努力。
    基於現在的設計的時脈越來越高,在測試階段如何判斷一個產品是否有達到預定的時序要求也是越來越重要。對於系統晶片內部的核心的延遲誤失測試(Delay fault testing)即將會成為在製造測試中不可或缺的一環。然而目前已經提出的標準不是沒有考慮到延遲誤失測試就是無法滿足同時所有延遲誤失測試的需求以及系統晶片測試的成本。現存的架構並沒有辦法達到延遲誤失測試的時序精確度,或是因為此類測試的需求,而使各個核心的測試無法同時執行。在此篇論文中,我們提出一個新的系統晶片延遲誤失測試的架構,此架構包含了一個修改過後的P1500測試包裝架構(P1500 Test Wrapper Architecture)以及一個具有延遲誤失測試功能的時脈訊號控制器。修改過後的測試包裝能夠在單一的包裝下儲存一對測試圖案並精確的發送出測試圖案來達到延遲誤失測試的施行。時脈訊號控制器可以使得各個核心的測試不會互相干擾影響,降低測試所需時間。最後本文以一個現存的系統晶片來實際驗證新的測試架構的提供的功能性與可以接受的面積的消耗。


    Abstract
    Following the rapidly increasing capacity of semi-conductor technology, the design methodology has come to a higher level of abstraction. The so-called system-on-chip design concept emphasizes reusability of building blocks and provides higher productivity. However, one of issues for the newly-emerging design concept is to verify the products’ functionality and timing specification. IEEE P1500 is applied to test functional correctness of each core in SOC. While verifying the timing specification, the existing wrapper is needed to be modified to carry out delay fault testing of individual core. In this thesis, a delay-fault-testing architecture that consists of modified wrapper based on IEEE P1500 standard and delay-test-aware clock controller is proposed. Wrapper is modified to recreate the environment of delay fault testing for embedded cores, while the clock controller is for test localization. The result shows acceptable area overhead in example SOC design.

    Contents Abstract 1 Contents 2 List of Figures 4 List of Tables 6 Chapter 1 Introduction 7 Chapter 2 Preliminaries 11 2.1 IEEE P1500 Overview 11 2.1.1 Core Test Language 11 2.1.2 Scalable Core Test Architecture 11 2.2 Delay Test Schemes and Requirements 13 2.3 Previous Work 14 2.3.1 Delay Fault Testing of Core-Based System-on-a-Chip 14 2.3.2 Using the Oscillation Test Method to Test Delay Faults in Embedded Cores 17 Chapter 3 Wrapper Modification 20 3.1 WBR Modification 21 3.1.1 Input Part Modification 21 3.1.2 Output Part Modification 22 3.2 Control Circuitry Modification 23 3.3 Explanation of Delay-Fault-Testing Sequence 24 3.4 Reduction of pattern-pair shifting time 28 Chapter 4 Delay-Test-Aware Clock Controller 30 4.1 Clock Switching Circuit 30 4.2 Clock Control Cell 31 4.3 Proposed Clock Controller 37 Chapter 5 Case Study 40 Chapter 6 Conclusions and Future Works 45 Bibliography 46 List of Figures Fig. 2.1 Example of an IEEE P1500 SECT wrapper [5] 12 Fig. 2.2 Delay Test Schemes 14 Fig. 2.3 Producer/consumer model [4] 15 Fig. 2.4 Modified Wrapper for Oscillation Test Method 18 Fig. 3.1 IEEE P1500 WBR 22 Fig. 3.2 Input WBR 22 Fig. 3.3 Output WBR 23 Fig. 3.4 Modified Controller 24 Fig. 3.5 Waveform of Wrapper Setup Sequence 25 Fig. 3.6 Waveform of Phase 1 in Wrapper Test Sequence 26 Fig. 3.7 Waveform of Phase 2 in Wrapper Test Sequence 27 Fig. 3.8 Pattern Pair Shift Operation 28 Fig. 3.9 Alternate WBR 29 Fig. 3.10 Shift Operation with Alternate WBR 29 Fig. 4.1 Clock Gating Circuit 31 Fig. 4.2 Clock Switching Circuit 31 Fig. 4.3 CTRL_CELL 32 Fig. 4.4 FSM_T 32 Fig. 4.5 FSM_N 33 Fig. 4.6 Waveform of NORMALCLK Instruction 35 Fig. 4.7 Waveform of TESTCLK Instruction 36 Fig. 4.8 Waveform of Generation of Two Normal Clock Pulses 37 Fig. 4.9 Waveform of STALL Instruction 37 Fig. 4.10 SOC Example 38 Fig. 411 Clock Controller Configuration Relative to Example SOC 38 Fig. 5.1 Block Diagram of CP 40 Fig. 5.2 Test Architecture of CP 41 List of Tables Table 3.1 Delay-Fault-Testing Sequence for Modified Wrapper 28 Table 5.1 DFT Summary of Cores 42 Table 5.2 Summary of Area of Cores in CP 43 Table 5.3 Result of Pattern Generation 43

    Bibliography

    [1] Marinissen, E. J., R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg, and C. Wouters, “A Structured And Scalable Mechanism for Test Access to Embedded Reusabe Cores,” Proc. of IEEE International Test Conference (ITC), pages 284-293, October 1998.

    [2] P. Varma and S. Bhatia, “A Structured Test Re-Use Methodology for Core-Based System Chips,” Proc. of IEEE International Test Conference (ITC), pages 294-302, October 1998.

    [3] Marinissen, E. J, S. K. Goel, and M. Lousberg, “Wrapper Design for Embedded Core Test,” Proc. of IEEE International Test Conference (ITC), pages 911-920, October 2000.

    [4] Xu, Q. and N. Nicolici, “Delay Fault Testing of Core-Based Systems-on-a-Chip,” Proc. of the Design, Automation and Test in Europe Conference and Exhibition (DATE), pages 744-749, 2003.

    [5] P1500 SECT Task Forces. IEEE P1500 Web Site. http://grouper.ieee.org/groups/1500/.

    [6] IEEE, “IEEE Standard Test Interface Language (STIL) for Digital Test Vector Data,” Piscataway: IEEE Standards Department, September 1999.

    [7] Palumbo, G., F. Pappalardo, S. Sannella, “Evaluation on Power Reduction Applying Gated Clock Approaches,” Proc. of IEEE International Symposium on Circuits and Systems (ISCAS), pages IV-85 - IV-88, vol. 4, May 2002.

    [8] Agarwala, S., Wiley, P., Rajagopal, A., Hill, A., Damodaran, R., Nardini, L., Anderson, T., Mullinnix, S., Flores, J., Heping Yue, Chachad, A., Apostol, J., Castille, K., Narasimha, U., Wolf, T., Nagaraj, N.S., Krishnan, M., Nguyen, L., Kroeger, T., Gill, M., Groves, P., Webster, B., Graber, J. and Karlovich, C, “A 800 MHz system-on-chip for wireless infrastructure applications,” Proc. of International Conference on VLSI design, pages 381-389, 2004.

    [9] Bower, J, “A system-on-a-chip for audio encoding,” Proc. of International Symposium on System-on-Chip (ISSC), pages 149-155, November 2004.

    [10] Khan, A.K., Magoshi, H., Matsumoto, T., Fujita, J., Furuhashi, M., Imai, M., Kurose, Y., Sato, M., Sato, K., Yamashita, Y., Kinying Kwan, Duc-Ngoc Le, Yu, J.H., Trung Nguyen, Yang, S., Tsou, A., Chow, K., Shen, J., Min Li, Jun Li, Hong Zhao and Yoshida, K., “A 150-MHz graphics rendering processor with 256-Mb embedded DRAM,” IEEE Journal of Solid-State Circuits (JSSC), pages 1775-1784, November 2001.

    [11] Bricaud, P.J., “IP reuse creation for system-on-a-chip design,” Proc. of IEEE Custom Integrated Circuits, pages 395-401, May 1999.

    [12] I. ARM Components, “AMBA Specification Rev2.0”, May 1999.

    [13] C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W. Wu, “A high-throughput low-cost AES processor,” IEEE Communications Magazine, vol. 41, pages 86-91, December. 2003.

    [14] M.-Y. Wang, C.-P. Su, C.-T. Huang, and C.-W. Wu, “An HMAC processor with integrated SHA-1 and MD5 algorithms,” in Proc. Asia and South Pacific Design Automation Conf. (ASPDAC), (Yokohama), pages 456-458, January 2004.

    [15] M.-C. Sun, C.-P. Su, C.-T. Huang, and C.-W. Wu, “Design of a scalable RSA and ECC crypto-processor,” in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), (Kitakyushu), pages 495-498, January 2003. (Best Paper Award).

    [16] C.-W. Wang, J.-R. Huang, K.-L. Cheng, H.-S. Hsu, C.-T. Huang, C.-W. Wu, and Y.-L. Lin, “A test access control and test integration system for system-on-chip,” in Sixth IEEE Int.Workshop on Testing Embedded Core-Based System-Chips (TECS), (Monterey, California), pages P2.1-P2.8, May 2002.

    [17] Marinissen, E.J., Goel, S.K. and Lousberg, M., ”Wrapper Design for Embedded Core Test,” in Proc. IEEE International Test Conference (ITC), pages 911-920, October. 2000.

    [18] Vermaak, H.J. and Kerkhoff, H.G., “Using the oscillation test method to test for delay faults in embedded cores,” in Proc. 7th AFRICON Conference in Africa (AFRICON), pages1105 – 1110, vol.2, September 2004.

    [19] Synopsys, Inc. “TetraMAX® ATPG User Guide”, Version U-2003.06, June 2003.

    [20] ARM components, Inc., “Multi-Layer AHB,” 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE