簡易檢索 / 詳目顯示

研究生: 薛森鴻
論文名稱: 藉微波電漿輔助化學氣相沉積系統探究氧化鎢
The Search and Research of Tungsten Oxide by MPECVD
指導教授: 施漢章
H. C. Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 97
中文關鍵詞: 氧化鎢奈米薛森鴻施漢章奈米棒奈米板化學氣相沉積電漿拉曼陰極發光材料微波
外文關鍵詞: tungsten oxide, nano, Sen Hung Hsueh, H. C. Shih, nanorods, nanoslabs, CVD, plasma, Raman, CL, materials, microwave
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中不需要任何的觸媒,吾人已能利用微波電漿輔助化學氣相沉積系統成功合成出氧化鎢奈米材料於矽晶圓上。由於電漿系統具有「局部高溫」的特性,故氧化鎢奈米材料能夠在短短數分鐘(三到五分鐘)之內被合成,這樣的製程將可以節省許多時間與成本。在此實驗過程中,氧化鎢以不同的形貌呈現,一為奈米棒(20—100 奈米),另一為奈米板(厚度30—100奈米;寬度100—500奈米;長度1至2微米。)。雖然造成不同形貌的原因仍然不是十分清楚,但是根據我們初步的觀察與討論,系統溫度與通入的氧氣流量對於氧化鎢成長過程中的影響必定是扮演一個重要的關鍵因素。
    穿透式電子顯微鏡可以幫助我們鑑別奈米棒、板的化學組成及其晶體結構。先利用電子能量散佈能譜顯示出其化學成分,再利用電子繞射圖案分析其晶體結構,結果顯示奈米棒與奈米板均為單晶。X光繞射的結果與拉曼光譜雙重確認後證實與電子顯微鏡分析的結果相符。在此研究中,藉由陰極發光的量測對奈米氧化鎢的發光性質做一個研討,除了觀察到由於奈米尺寸效應造成的藍移現象,更發現由於氧空缺的緣故,此製程的奈米氧化鎢發出紅橙色光。由於不使用任何觸媒的成長過程,氣-固機制被認為是較適當的成長機制。


    Tungsten oxides have been grown by microwave plasma enhanced chemical vapor deposition (MPECVD) directly on silicon substrate without using any catalyst. Due to the unique property of the plasma system, tungsten oxide could be synthesized in just several minutes (three to five minutes). It’s very economic for saving time and costs. In this studies, tungsten oxides have been fabricated in various morphologies, such as nano-rods (20—100nm in diameter), nano-slabs (30—100nm in thickness, 100—500nm in width and 1—2μm in length). Although the cause of different morphologies is still not very clear, from our preliminary observations and analyses, the results suggest that the temperature and the gas flow rate play an important role in the growth of these nano-materials of different morphologies.
    The crystal structure and chemical composition of these nano-rods and nano-slabs were identified by the transmission electron microscopy (TEM) and energy dispersion spectrum (EDS), the diffraction patterns show that the nano-rods and nano-slabs are both single crystal. The XRD results and Raman spectra coincide with the analyses of TEM. The cathode luminescence measurements of these nano-materials have also shown in this work and the spectra reveals a red or orange emission. The vapor-solid (VS) mechanism for the growth of these nano-materials is proposed.

    Abstract--------------------------------------------------------------------------i 論文摘要------------------------------------------------------------------------ii 誌謝-----------------------------------------------------------------------------iv 第一章、緒論 1-1、奈米材料簡介------------------------------------------------------------1 1-1-1、奈米材料效應----------------------------------------------------------1 1-1-2、奈米材料的種類-------------------------------------------------------3 1-1-3、奈米材料特殊的各項性質-------------------------------------------4 1-2、奈米科技的挑戰----------------------------------------------------------7 1-3、製備方法-------------------------------------------------------------------9 1-3-1、物理方法----------------------------------------------------------------9 1-3-2、化學方法----------------------------------------------------------------9 1-4、氧化鎢的應用-----------------------------------------------------------11 1-5、實驗動機-----------------------------------------------------------------14 1-6、奈米材料並非百利而無害--------------------------------------------15 參考資料-----------------------------------------------------------------------16 第二章、文獻回顧與實驗機器 2-1、WOx的文獻回顧--------------------------------------------------------20 2-1-1、合成氧化鎢奈米線---------------------------------------------------20 2-1-2、性質量測分析---------------------------------------------------------23 2-2、實驗方法-----------------------------------------------------------------25 2-2-1、實驗設計--------------------------------------------------------------25 2-2-2、實驗流程---------------------------------------------------------------27 2-3、實驗儀器原理介紹-----------------------------------------------------30 2-3-1、微波電漿輔助化學氣相沉積系統---------------------------------30 2-3-2、掃瞄式電子顯微鏡---------------------------------------------------31 2-3-3、低掠角X光繞射儀---------------------------------------------------32 2-3-4、拉曼光譜儀------------------------------------------------------------32 2-3-5、穿透式電子顯微鏡---------------------------------------------------32 2-3-6、陰極發光量測---------------------------------------------------------33 參考資料-----------------------------------------------------------------------34 第三章、結果與討論 3-1、氧化鎢的表面形態探討-----------------------------------------------35 3-1-1、奈米棒與奈米板------------------------------------------------------35 3-1-2、溫度的效應------------------------------------------------------------40 3-1-3、氧氣流量的影響------------------------------------------------------44 3-1-4、外加偏壓的效果------------------------------------------------------48 3-2、氧化鎢的結構鑑定與成分分析--------------------------------------52 3-2-1、低掠角X光繞射鑑定------------------------------------------------52 3-2-2、拉曼光譜鑑識---------------------------------------------------------55 3-2-3、穿透式電子顯微鏡分析---------------------------------------------59 3-3、成長機制討論-----------------------------------------------------------79 3-3-1、成長機制---------------------------------------------------------------79 3-3-2、奈米棒與奈米板的關係---------------------------------------------84 3-4、發光性質的分析--------------------------------------------------------86 3-5、後記-----------------------------------------------------------------------91 參考資料-----------------------------------------------------------------------93 第四章、總結 4-1、結語-----------------------------------------------------------------------95 4-2、未來展望-----------------------------------------------------------------97

    [01] http://www.casys.com.tw/news/ReadNews.asp?NewsID=13
    [02] 王崇人, 科學發展 2002年6月, 354期
    [03] http://scienceworld.wolfram.com/physics/Tunneling.html
    [04] Avouris et al., Nature Nov 1995. Vol. 39, Iss. 6; p. 603
    [05] http://www.casnano.net.cn/gb/kepu/cailiao/cl023.html
    [06] N. J. Curson, R. Nemutudi, N. J. Appleyard, M. Pepper, D. A. Ritchie, and G. A. C. Jones, Appl. Phys. Lett. Vol. 78. pp. 3466—3468. May 28, 2001
    [07] Kubo, J. Phys. Soc. Japan, 17, (1962) 975
    [08] http://www.mtmi.vu.lt/pfk/funkc_dariniai/nanostructures/super-
    lattice.htm
    [09] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee. J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999)
    [10] W. A. de Heer, A. Chatelaine, D. Ugarte, Science 270, 1179 (1995)
    [11] K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 75, 3017 (1999)
    [12] K.L. Wang et al., J. Crystal Growth 237–239 (2002) 1892–1897
    [13] R. Defay, I. Prigogine, A. Bellemans, and D. H. Everett, Surface Tension and Adsorption, John Wiley and Sons. Inc., New York, 1966.
    [14] http://www.aip.org/enews/physnews/2004/split/678-1.html
    [15] W. Barthlott, C. Neinhuis, Planta (1997) 202: 1-8
    [16] S. Iijima, Nature, 354, 56-58 (1991).
    [17] http://www.itri.org.tw/weo/05-06-2002/news/20.htm
    [18] K. Matsumoto, M. Ishii, K. Segawa, and Y. Oka, Appl. Phys. Lett. 68 (1), 1 January 1996
    [19] G. P. Berman, G. D. Doolen, Superlattices and Microstructures, Vol. 27, No. 2/3, 2000
    [20] XiangFeng Duan, Yu Huang, Ritesh Agarwal, Charles M. Lieber, Nature 421, 241—245 (2003)
    [21] http://news.semi.ac.cn/library/ele4.pdf
    [22] S. Banerjee, J. Mater. Sci. 37 (2002) 4261 – 4271
    [23] http://www.casnano.ac.cn/gb/kepu/cailiao/cl001_03.html
    [24] Peng et al., J. Appl. Phys., Vol. 89, No. 1, 1 Jan 2001
    [25] K.-H. Lee et al., Chem. Phys. Lett. 376 (2003) 498–503
    [26] Lee et al., Appl. Phys. Lett., Vol. 81, No. 4, 22 Jul 2002
    [27] Yan. et al., J. Appl. Phys., Vol. 93, No. 8, 15 Apr 2003
    [28] X. Xiang et al., Chem. Phys. Lett. 378 (2003) 660-664
    [29] L. H. Chan, K. H. Homg, S. H. Lai, X. W. Liu, H. C. Shih, Thin Solid Film, 423, pp. 27-32 (2003)
    [30] X. B. Zeng et al., J. Crystal Growth 247 (2003) 13-16
    [31] J.M. Ting, R.M. Liu, Carbon 41 (2003) 579– 625
    [32] S. H. Tasi, C. W. Chao, C. L. Lee, X. W. Liu, I. N. Lin, H. C. Shih, Eletrochem. Solid-State Lett. 2, 247 (1999)
    [33] M. J. Alam, D. C. Cameron, J. Sol-Gel Sci. Tech. 25, 137—145, 2002
    [34] D. F. Zhang, L. D. Sun, J. L. Yin, and C. H. Yan, Adv. Mater. 2003, 15, No. 12, June 17
    [35] D. Xu, X. Shi, G. Guo, L. Gui and Y. Tang, J. Phys. Chem. B 104 (2000) 5061.
    [36] B.P. Jelle, G. Hagen, Sol. Energy Mat. Sol. Cells 58 (1999) 277.
    [37] J.D. Guo, Y.J.J. Li, M.S. Whittingham, J. Power Sources 54 (1995) 461.
    [38] C.G. Granqvist, Sol. Energy Mat. Sol. Cells 60 (2000) 201.
    [39] W.M. Qu, W. Wlodarski, Sens. Actuators, B 64 (2000) 42.
    [40] M. Akiyama, J.Tamaki, M. Miura, and N. Yamazoe, Chem. Lett., 1, 1611 (1991).
    [41] J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, and N. Yamazoe, J. Electrochem. Soc., 141, 2207 (1994).
    [42] C. W. Chu, M. J. Deen, and R. H. Hill, J. Electrochem. Soc., 145, 4219 (1998).
    [43] H. M. Lin, C. M. Hsu, H. Y. Yang, P. Y. Lee, and C. C. Yang, Sens. Actuators B, 22, 63 (1994).
    [44] K.H. Lee, Y.K. Fang, W.J. Lee, J.J. Ho, K.H. Chen, K.S. Liao, Sens. Actuators, B 69 (2000) 96.
    [45] E. Washizu et al. Solid State Ionics 165 (2003) 175–180
    [46] http://www.kepu.gov.cn/kjsh/cd90n.htm
    [47] A. Aird, E.K.H. Salje, J. Phys. Condens. Matter 10 (1998) L377.
    [48] I. Turyan et al. Adv. Mater. 2000, 12, No. 5
    [49] S. L. Sung, S. H. Tasi, C. H. Tseng, F. K. Chiang, X. W. Liu, H. C. Shih, Appl. Phys. Lett. 74, 197 (1999)
    [50] S. H. Tasi, C. W. Chao, C. L. Lee, H. C. Shih, Appl. Phys. Lett. 74, 3462 (1999)
    [51] S. H. Tsai, F. K. Chiang, T. G. Tsai, F. S. Shieu, H. C. Shih, Thin Solid Film 366, 11 (2000)
    [52] L. H. Chan, K. H. Homg, D. Q. Xian, W. J. Hsieh, S. H, Lai, T. C. Lin, F. S. Shieu, K. J. Chen, H. C. Cheng, H. C. Shih, Appl. Phys. Lett. 82, pp. 4334—4336 (2003)
    [53] http://www.sciencedaily.com/releases/2004/04/040407081930.htm

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE