研究生: |
林廷叡 Lin, Ting-Jui |
---|---|
論文名稱: |
以GH-space分析探討各種二氧化碳再利用製程之可行性 Feasibility analysis of CO2-reuse process by GH-space |
指導教授: |
汪上曉
Wong, Shan-Hill 王聖潔 Wang, San-Jang |
口試委員: |
陳逸航
Chen, Yih-Hang 錢義隆 Chien, I-Lung 張煖 Chang, Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | GH-space分析 、二氧化碳再利用 、碳酸二甲酯 、重組反應 |
外文關鍵詞: | GH-space analysis, CO2-reuse, DMC, Reforming |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著石化燃料的廣泛應用,全球二氧化碳濃度不斷升高,使得二氧化碳有關的研究愈來愈被重視,二氧化碳捕獲和儲存(CCS)一直被視為是減少碳排放、減緩溫室效應的重要途徑。雖然在捕獲方面一直有很大的進展,但是儲存技術方面卻停滯不前。因此如何減少碳排放及如何利用二氧化碳轉換成化學及能源產品成為了被大家十分重視的問題。現今,雖然已經有很多二氧化碳再利用的製程被提出了,但在考慮反應消耗的能量和排放的二氧化碳後,是否還能有減碳的效果?
本研究利用了 GH-space 來進行分析,GH-space 是一種理想化的簡單分析方法,只需要各反應的反應熱、反應自由能以及反應條件即可透過熱力學的計算得到最理想的製程能耗,可以快速地進行分析,研究中,分析了幾種二氧化碳再利用的製程,第一部份是不同重組反應生產不同比例合成氣的減碳效果分析,和幾種以合成氣為原料的製程分析(甲醇、丁醛),第二部份則是碳酸二甲酯的製程分析,目的是找出最佳的碳酸二甲酯合成反應路徑。
第一部份的結果中,甲烷的不同重組反應分析顯示,二元重組(乾式重組+水蒸氣重組)在生產氫碳比 1.6 以下的合成氣時才有減碳效果,而三元重組(乾式重組+水蒸氣重組+甲烷部分氧化)則是在生產氫碳比 2.2 以下的合成氣時就有減碳效果,最後使用綠能氫的組合(乾式重組+綠能氫)則是在生產任何比例的合成氣時皆有減碳效果,但使用綠能氫的組合相較於其他兩者有著原料價格較貴的缺點。在甲醇的製程研究中也顯示了分析結果跟 Aspen plus 的模擬結果差不多。
第二部份在不同路徑合成碳酸二甲酯的研究中可以發現,用 GH-space 分析找出最佳路徑是可行的,只以減碳量來看,酯交換法、直接合成法、以環氧丁烷脫水的直接合成法皆有很好的減碳量,而甲醇氧化羰基化法則有著最差的減碳量,若是綜和減碳量、反應容易進行程度和產品利潤方面,經由碳酸丙烯酯的尿素間接醇解法減碳量不低、也沒有轉化率差的問題,應可以說是一條較好的路徑。
With the increasing use of fossil fuels and the increasing concentration of carbon dioxide in the world. Carbon dioxide capture and storage (CCS) has been regarded as an important way to reduce carbon emissions. Although the considerable progress has been made in capturing, storage technology has been stagnant. So how to reduce carbon emissions and how to transform carbon dioxide into chemical and energy products has become a very important issue.
In this study, GH-space idealized process analysis was used to analyze several carbon dioxide reusing processes. This ideal analysis was used to calculate the least energy-consuming and to minimize the carbon dioxide emissions from the process.
The research is divided into two parts. Frist part is to study the carbon reduction ability of different H2/CO ratio of syngas produced by different reforming reactions. Second part is to find the best reaction path to synthesis DMC from CO2 and methanol.
For the syngas synthesis research, we found Dry/Steam process has ability to reduce CO2 if H2/CO ratio less than 1.6. Dry/Steam/Partial process can reduce CO2 when H2/CO ratio less than 2.2. Dry+H2 process can reduce CO2 in any H2/CO ratio. In raw material cost research shows, only if H2 price lower than 1000 USD/Ton, Dry/H2 process can compete with the others.
For the DMC synthesis research, we found it is possible to find the best reaction path by GH-space. In terms of carbon reduction ability. Transesterification method, direct synthesis method and direct synthesis method (with BO dehydration) all have very good carbon reduction ability, and methanol oxidation carbonylation method has the worst carbon reduction ability. If consider all carbon reduction ability, reaction conversion and product profits. Urea indirect alcoholysis via PC should be the best path.
[1] Sempuga, B. C.; Hausberger, B.; Patel, B.; Hildebrandt, D.; Glasser, D. Classification of Chemical Processes: A Graphical Approach to Process Synthesis To Improve Reactive Process Work Efficiency. Ind Eng Chem Res 2010, 49, 8227-8237.
[2] Fox, J. A.; Hildebrandt, D.; Glasser, D.; Patel, B. A Graphical Approach to Process Synthesis and its Application to Steam Reforming. AIChE J 2013, 59, 3714-3729.
[3] Fox, J. A.; Hildebrandt, D.; Glasser, D.; Batel, B.; Hausberger, B. Process Flow Sheet Synthesis: Reaching Targets for Idealized Coal Gasification. AIChE J 2014, 60, 3258-3266.
[4] Patel, B.; Hildebrandt, D.; Glasser, D. Overcoming the Overall Positive Free Energy of a Process: Using the Second Law to Understand How This is Achieved. Presented at the AIChE Annual Meeting, Austin, TX, November 2004.
[5] Luyben, W. L. Design and Control of the Dry Methane Reforming Process. Ind Eng Chem Res 2014, 53, 14423-14439.
[6] Salhi, N.; Boulahouache, A.; Petit, C.; Kiennemann, A.; Rabia, C. Steam Reforming of Methane to Syngas over NiAl2O4 Spinel Catalysts. Int J Hydrogen Energ 2011, 36, 11433-11439.
[7] Vernon, P. D. F.; Green, M. L. H.; Cheetham, A. K.; Ashcroft, A. T. Partial Oxidation of Methane to Synthesis Gas. Catal Lett 1990, 6, 181-186.
[8] Lim, Y.; Lee, C. J.; Jeong, Y. S.; Song, I. H.; Lee, C. J.; Han, C. Optimal Design and Decision for Combined Steam Reforming Process with Dry Methane Reforming to Reuse CO2 as a Raw Material. Ind Eng Chem Res 2012, 51, 4982-4989.
[9] Baltrusaitis, J.; Luyben, W. L. Methane Conversion to Syngas for Gas-to-Liquids (GTL): Is Sustainable CO2 Reuse via Dry Methane Reforming (DMR) Cost Competitive with SMR and AIR Processes? Acs Sustain Chem Eng 2015, 3, 2100-2111.
[10] Tundo, P.; Selva, M. The Chemistry of Dimethyl Crbonate. Accounts Chem Res 2002, 35, 706-716.
[11] Saada, R.; Kellici, S.; Heil, T.; Morgan, D.; Saha, B. GreenerSynthesis of Dimethyl Carbonate using a Novel Ceria-zirconia Oxide/graphene
Nanocomposite Catalyst. Appl Catal B-Environ 2015, 168, 353-362.
[12] Peng, W. C.; Zhao, N.; Xiao, F. K.; Wei, W.; Sun, Y. H. Recent Progress in Phosgene-free Methods for Synthesis of Dimethyl Carbonate. Pure Appl Chem 2012, 84, 603-620.
[13] Schaffner, B.; Schaffner, F.; Verevkin, S. P.; Borner, A. Organic Carbonates as Solvents in Synthesis and Catalysis. Chem Rev 2010, 110, 4554-4581.
[14] Leino, E.; Maki-Arvela, P.; Eta, V.; Murzin, D. Y.; Salmi, T.; Mikkola, J. P. Conventional Synthesis Methods of Short-chain Dialkylcarbonates and Novel Production Technology via Direct Route from Alcohol and Waste CO2. Appl Catal a-Gen 2010, 383, 1-13.
[15] Delledonne, D.; Rivetti, F.; Romano, U. Developments in the Production and Application of Dimethyl Carbonate. Appl Catal a-Gen 2001, 221, 241-251.
[16] Wang, H.; Gao, P.; Zhao, T. J.; Wei, W.; Sun, Y. H. Recent advances in the Catalytic Conversion of CO2 to Value Added Compunds. Sci China Chem 2015, 58, 79-92.
[17] Huang, S. Y.; Yan, B.; Wang, S. P.; Ma, X. B. Recent Advances in Dialkyl Carbonates Synthesis and Applications. Chem Soc Rev 2015, 44, 3079-3116.
[18] Cai, Q. H.; Lu, B.; Guo, L. J.; Shan, Y. K. Studies on Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide. Catal Commun 2009, 10, 605-609.
[19] He, Q.; O'Brien, J. W.; Kitselman, K. A.; Tompkins, L. E.; Curtis, G. C. T.; Kerton, F. M. Synthesis of Cyclic Carbonates from CO2 and Epoxides using Ionic Liquids and Related Catalysts including Choline Chloride-metal halide Mixtures. Catal Sci Technol 2014, 4, 1513-1528.
[20] Dai, W. L.; Luo, S. L.; Yin, S. F.; Au, C. T. The Direct Transformation of Carbon Dioxide to Organic Carbonates over Heterogeneous Catalysts. Appl Catal a-Gen 2009, 366, 2-12.
[21] Eta, V.; Maki-Arvela, P.; Warna, J.; Salmi, T.; Mikkola, J. P.; Murzin, D. Y. Kinetics of Dimethyl Carbonate Synthesis from Methanol and Carbon Dioxide over ZrO2-MgO Catalyst in the Presence of Butylene Oxide as Additive. Appl Catal a-Gen 2011, 404, 39-46.
[22] 經濟部能源局. 104 年我國電力排放係數.pdf. 2015.
[23] 蘇美惠, 張. 風力產氫結合燃料電池應用於偏遠地區緊急救援系統示範計畫. 行政院原子能委員會委託研究計畫研究報告 2011.
[24] Cen Y Q, L. X. N., Liu H Z. Preparation of Copper-Based Catalysts for Methanol Synthesis by Acid-Alkali-Based Alternate Precipitation Method. Chin J Catal(Cuihua Xuebao) 2006, 27, 210-216.
[25] 黃宣華. 藉由乾式及雙重組反應合成甲醇來減碳的可能性.國立清華大學碩士論文 2016.
[26] Li, C. Y.; Yan, L.; Lu, L. L.; Xiong, K.; Wang, W. L.; Jiang, M.; Liu, J.; Song, X. G.; Zhan, Z. P.; Jiang, Z.; Ding, Y. J. Single Atom Dispersed Rhbiphephos&PPh3@porous Organic Copolymers: Highly Efficient Catalysts for Continuous Fixed-bed Hydroformylation of Propene. Green Chem 2016, 18,2995-3005.
[27] 吕锋, 殷玉圣, 冷万里, 陈峥, 黄建明, 陈均飞. 正丁醛气相加氢制正丁醇催化剂及其制备方法.中國專利 CN1251796C 2006.
[28] Beccari, M.; Romano, U.: Encyclopaedia of hydrocarbons. [Vol. II, [Vol. II; ENI : Istituto della Enciclopedia italiana: [Rome], 2006.
[29] Tomishige, K.; Sakaihori, T.; Ikeda, Y.; Fujimoto, K. A Novel Method of Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Catalyzed by Zirconia. Catal Lett 1999, 58, 225-229.
[30] Fukuoka, S.; Fukawa, I.; Tojo, M.; Oonishi, K.; Hachiya, H.; Aminaka, M.; Hasegawa, K.; Komiya, K. A Novel Non-Phosgene Process for Polycarbonate
Production from CO2: Green and Sustainable Chemistry in Practice. Catal Surv Asia 2010, 14, 146-163.
[31] Jun, J. O.; Lee, J.; Kang, K. H.; Song, I. K. Synthesis of Dimethyl Carbonate from Ethylene Carbonate and Methanol Over Nano-Catalysts Supported on CeO2-MgO. J Nanosci Nanotechno 2015, 15, 8330-8335.
[32] 张凤英. 氨汽提尿素工艺的初步剖析. 化肥工业 1992, 6.
[33] Zhang, C.; Lu, B.; Wang, X. G.; Zhao, J. X.; Cai, Q. H. Selective Synthesis of Dimethyl Carbonate from Urea and Methanol over Fe2O3/HMCM-49. Catal Sci Technol 2012, 2, 305-309.
[34] 吴雪梅, 丁同梅, 赫崇衡, 田恒水. 尿素醇解法合成碳酸乙烯酯. 化工进展2016, 35, 3263-3266.
[35] Zhao, X. Q.; Zhang, Y.; Wang, Y. J. Synthesis of Propylene Carbonate from Urea and 1,2-propylene Glycol over a Zinc Acetate Catalyst. Ind Eng Chem Res 2004, 43, 4038-4042.
[36] Murugan, C.; Bajaj, H. C. Transesterification of Propylene Carbonate with Methanol using Mg-Al-CO3 Hydrotalcite as Solid Base Catalyst. Indian J Chem A 2010, 49, 1182-1188.
[37] Itoh, H.; Watanabe, Y.; Mori, K.; Umino, H. Synthesis of Dimethyl Carbonate by Vapor Phase Oxidative Carbonylation of Methanol. Green Chem 2003, 5, 558-562.