研究生: |
張于凡 Chang, Yu-Fan |
---|---|
論文名稱: |
PAMAM樹狀體與SDS界面活性劑靜電錯合物之奈米結構研究 Nanostructures of the Electrostatic Complexes of Poly(amidoamine) G4 Dendrimer and Sodium Dodecyl Sulfate |
指導教授: |
陳信龍
Chen, Hsin-Lung |
口試委員: |
朱哲毅
Chu, Che-Yi 蘇群仁 Su, Chun-Jen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 64 |
中文關鍵詞: | 樹枝狀高分子 、界面活性劑 、靜電錯合物 、波動柱狀相 |
外文關鍵詞: | dendrimer, surfactant, electrostatic-complex, undulated-columnar-phase |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高分子與兩性界面活性劑 (amphiphilic surfactant) 的錯合物可透過極性(由高分子主鏈和界面活性劑頭基所構成)以及非極性(界面活性劑的烷鏈)之間的微相分離提供一個簡易的途徑來形成具長程有序之奈米結構。先前的研究主要集中在界面活性劑與線性高分子的錯合物,主要觀察到的結構為平坦界面的層狀結構。本研究探討質子化後帶正電的poly(amidoamine) 樹狀體(簡稱PAMAM樹狀體)與帶負電的界面活性劑十二烷基硫酸鈉 (Sodium dodecyl sulfate, SDS) 以靜電作用力形成錯合物。我們透過NMR光譜來量測錯合物之實際組成 (xa),結果顯示靜電錯合有效的發生。小角度X光散射 (SAXS) 結果顯示,隨著SDS鍵結比例增加,錯合物會由體心立方堆積 (body centered cubic phase) 結構轉變成六面堆疊圓柱 (hexagonal columnar phase) 結構再轉變成面心矩形柱狀 (centered rectangular columnar) 結構,最後轉為傾斜柱狀 (oblique columnar phase) 結構。由Cryo-TEM的影像可以觀察到,SDS所形成的柱狀結構中,沿著柱狀長軸的方向仍然保持樹狀體分子的曲率而形成特殊的波動柱狀結構。本研究可揭露,我們可以藉由操控界面活性劑鍵結的比例並利用樹狀體的幾何特性產生各種具界面波動的柱狀有序形態。
The complexation of polymer with amphiphilic surfactants offers a facile route for constructing long-range ordered nanostructures via microphase separation between the polar (composed of the polymer backbone and surfactant headgroup) and the nonpolar (surfactant alky tail) components. Previous studies on this type of supramolecule have been centered on the complexes of surfactants with linear polymers, where the lamellar structure with flat interface had been predominantly observed. In this study, we demonstrate that the electrostatic complexation of a surfactant with an oppositely charged 3D polymer, dendrimer, yielded the long-range ordered columnar nanostructures with undulated interface, where the nonzero interfacial curvature was imparted by the intrinsic geometric feature of the dendrimer. Here an anionic surfactant, sodium dodecyl sulfate (SDS), was complexed with protonated G4 poly(amidoamine) (PAMAM) dendrimer whose positive charge density was prescribed by degree of protonation (dp). The actual binding ratio (xa) of the SDS to the dendrimer measured by NMR spectroscopy revealed that the electrostatic binding between two components in aqueous solution occurred cooperatively. The SAXS results revealed the transition of the mesomorphic structure of the complex with respect to the increase of xa, where the structure transformed from body-centered cubic phase (Im"3" ̅m) to hexagonal columnar phase (p6mm), and then to centered rectangular columnar phase (c2mm) with the columns formed by SDS. When xa nearly reached the stoichiometric value, i.e., xa ≌ 1.0, an oblique columnar phase (p2) was formed. Cryo-TEM observation revealed that the interface of the SDS cylindrical micelles was undulated. The present study has thus demonstrated the power of dendrimer as the supramolecular building block for constructing columnar mesophases with various packing symmetries and further conferring undulated interface to the cylindrical micelles composed of the surfactant.
1 Clark, D. J. & Kimura, T. Electrostatic mechanism of chromatin folding. Journal of molecular biology 211, 883-896 (1990).
2 Huang, M. et al. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 348, 424-428, doi:10.1126/science.aaa2421 (2015).
3 Wu, Y.-C. & Kuo, S.-W. Self-assembly supramolecular structure through complementary multiple hydrogen bonding of heteronucleobase-multifunctionalized polyhedral oligomeric silsesquioxane (POSS) complexes. Journal of Materials Chemistry 22, 2982-2991, doi:10.1039/C1JM14699H (2012).
4 Li, M. et al. Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems. Science and technology of advanced materials 13, 053001-053001, doi:10.1088/1468-6996/13/5/053001 (2012).
5 Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157-160, doi:10.1038/nature02368 (2004).
6 Balagurusamy, V. S. K., Ungar, G., Percec, V. & Johansson, G. Rational Design of the First Spherical Supramolecular Dendrimers Self-Organized in a Novel Thermotropic Cubic Liquid-Crystalline Phase and the Determination of Their Shape by X-ray Analysis. Journal of the American Chemical Society 119, 1539-1555, doi:10.1021/ja963295i (1997).
7 Hudson, S. D. et al. Direct Visualization of Individual Cylindrical and Spherical Supramolecular Dendrimers. Science 278, 449-452, doi:10.1126/science.278.5337.449 (1997).
8 Yeardley, D. J. P., Ungar, G., Percec, V., Holerca, M. N. & Johansson, G. Spherical Supramolecular Minidendrimers Self-Organized in an “Inverse Micellar”-like Thermotropic Body-Centered Cubic Liquid Crystalline Phase. Journal of the American Chemical Society 122, 1684-1689, doi:10.1021/ja993915q (2000).
9 Ungar, G., Liu, Y., Zeng, X., Percec, V. & Cho, W.-D. Giant Supramolecular Liquid Crystal Lattice. Science 299, 1208-1211, doi:10.1126/science.1078849 (2003).
10 Prosa, T. J., Bauer, B. J. & Amis, E. J. From Stars to Spheres: A SAXS Analysis of Dilute Dendrimer Solutions. Macromolecules 34, 4897-4906, doi:10.1021/ma0002186 (2001).
11 Rathgeber, S., Monkenbusch, M., Kreitschmann, M., Urban, V. & Brulet, A. Dynamics of star-burst dendrimers in solution in relation to their structural properties. The Journal of Chemical Physics 117, 4047-4062, doi:10.1063/1.1493771 (2002).
12 Klajnert½, B. & Bryszewska, M. Dendrimers: properties and applications. (2001).
13 Esfand, R. & Tomalia, D. A. Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug discovery today 6, 427-436 (2001).
14 Tomalia, D. A. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Aldrichimica Acta 37, 39-57 (2004).
15 Tully, D. C. & Fréchet, J. M. Dendrimers at surfaces and interfaces: chemistry and applications. Chemical Communications, 1229-1239 (2001).
16 Hecht, S. & Fréchet, J. M. Dendritic encapsulation of function: applying nature's site isolation principle from biomimetics to materials science. Angewandte Chemie International Edition 40, 74-91 (2001).
17 Piotti, M. E., Rivera, F., Bond, R., Hawker, C. J. & Fréchet, J. M. Synthesis and catalytic activity of unimolecular dendritic reverse micelles with “internal” functional groups. Journal of the American Chemical Society 121, 9471-9472 (1999).
18 Barberá, J. et al. Self-organization of nanostructured functional dendrimers. Journal of Materials Chemistry 15, 4093-4105, doi:10.1039/B502464A (2005).
19 Donnio, B., Buathong, S., Bury, I. & Guillon, D. Liquid crystalline dendrimers. Chemical Society Reviews 36, 1495-1513, doi:10.1039/B605531C (2007).
20 Lorenz, K., Hölter, D., Stühn, B., Mülhaupt, R. & Frey, H. A mesogen-functionized carbosilane dendrimer: A dendritic liquid crystalline polymer. Advanced Materials 8, 414-416, doi:10.1002/adma.19960080509 (1996).
21 Cameron, J. H., Facher, A., Lattermann, G. & Diele, S. Poly(propyleneimine) dendromesogens with hexagonal columnar mesophase. Advanced Materials 9, 398-403, doi:10.1002/adma.19970090507 (1997).
22 Baars, M. W. P. L., Söntjens, S. H. M., Fischer, H. M., Peerlings, H. W. I. & Meijer, E. W. Liquid-Crystalline Properties of Poly(propylene imine) Dendrimers Functionalized with Cyanobiphenyl Mesogens at the Periphery. Chemistry – A European Journal 4, 2456-2466, doi:10.1002/(sici)1521-3765(19981204)4:12<2456::aid-chem2456>3.0.co;2-l (1998).
23 Barberá, J., Marcos, M. & Serrano, J. L. Dendromesogens: Liquid Crystal Organizations versus Starburst Structures. Chemistry – A European Journal 5, 1834-1840, doi:10.1002/(sici)1521-3765(19990604)5:6<1834::aid-chem1834>3.0.co;2-a (1999).
24 Marcos, M., Omenat, A. & Serrano, J. L. Structure-mesomorphism relationship in terminally functionalised liquid crystal dendrimers. Comptes Rendus Chimie 6, 947-957, doi:https://doi.org/10.1016/j.crci.2003.05.001 (2003).
25 Schenning, A. P. H. J. et al. Amphiphilic Dendrimers as Building Blocks in Supramolecular Assemblies. Journal of the American Chemical Society 120, 8199-8208, doi:10.1021/ja9736774 (1998).
26 Martín-Rapún, R. et al. Ionic Thermotropic Liquid Crystal Dendrimers. Journal of the American Chemical Society 127, 7397-7403, doi:10.1021/ja042264h (2005).
27 Faul, C. F. J., Antonietti, M., Hentze, H.-P. & Smarsly, B. Solid-state nanostructure of PAMAM dendrimer–fluorosurfactant complexes and nanoparticles synthesis within the ionic subphase. Colloids and Surfaces A: Physicochemical and Engineering Aspects 212, 115-121, doi:https://doi.org/10.1016/S0927-7757(02)00301-1 (2003).
28 Ujiie, S., Yano, Y. & Mori, A. Liquid-Crystalline Branched Polymers having Ionic Moieties. Molecular Crystals and Liquid Crystals 411, 483-489, doi:10.1080/15421400490436403 (2004).
29 Rueff, J.-M. et al. Lamellar to Columnar Mesophase Evolution in a Series of PAMAM Liquid-Crystalline Codendrimers. Macromolecules 36, 8368-8375, doi:10.1021/ma030223k (2003).
30 Martín‐Rapún, R. et al. Liquid crystalline semifluorinated ionic dendrimers. Liquid Crystals 34, 395-400, doi:10.1080/02678290601171279 (2007).
31 Kannan, R., Nance, E., Kannan, S. & Tomalia, D. A. Emerging concepts in dendrimer‐based nanomedicine: from design principles to clinical applications. Journal of internal medicine 276, 579-617 (2014).
32 Hawker, C. J. & Frechet, J. M. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society 112, 7638-7647 (1990).
33 Pourianazar, N. T., Mutlu, P. & Gunduz, U. Bioapplications of poly (amidoamine)(PAMAM) dendrimers in nanomedicine. Journal of Nanoparticle Research 16, 2342 (2014).
34 Cakara, D., Kleimann, J. & Borkovec, M. Microscopic protonation equilibria of poly (amidoamine) dendrimers from macroscopic titrations. Macromolecules 36, 4201-4207 (2003).
35 Scheirs, J. (John Wiley & Sons, 2001).
36 Caminade, A.-M., Turrin, C.-O., Laurent, R., Ouali, A. & Delavaux-Nicot, B. Dendrimers: towards catalytic, material and biomedical uses. (John Wiley & Sons, 2011).
37 van Duijvenbode, R. C., Borkovec, M. & Koper, G. J. Acid-base properties of poly (propylene imine) dendrimers. Polymer 39, 2657-2664 (1998).
38 Lombardo, D., Kiselev, M. A., Magazù, S. & Calandra, P. Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Advances in Condensed Matter Physics 2015 (2015).
39 Antonietti, M., Henke, S. & Thünemann, A. Highly ordered materials with ultra‐low surface energies: Polyelectrolyte–surfactant, complexes with fluorinated surfactants. Advanced Materials 8, 41-45 (1996).
40 Antonietti, M. & Göltner, C. Superstructures of functional colloids: chemistry on the nanometer scale. Angewandte Chemie International Edition in English 36, 910-928 (1997).
41 Thünemann, A. F. Nano‐structured materials with low surface energies formed by polyelectrolytes and fluorinated amphiphiles (PEFA). Polymer international 49, 636-644 (2000).
42 Antonietti, M. & Conrad, J. Herstellung höchstgeordneter flüssigkristalliner Phasen durch Komplexbildung von Polyacrylsäure mit kationischen Tensiden. Angewandte Chemie 106, 1927-1929 (1994).
43 Pershan, P. S. Structure of liquid crystal phases. Vol. 23 (World Scientific, 1988).
44 Antonietti, M. & Maskos, M. Fine-tuning of phase structures and thermoplasticity of polyelectrolyte− surfactant complexes: Copolymers of ionic monomers with N-alkylacrylamides. Macromolecules 29, 4199-4205 (1996).
45 Shimomura, M. & Kunitake, T. Immobilization of synthetic bilayer membranes as multilayered polymer films. Polymer journal 16, 187 (1984).
46 Ishikawa, Y. & Kunitake, T. Design of spatial disposition of anionic porphyrins in matrices of ammonium bilayer membranes. Journal of the American Chemical Society 113, 621-630 (1991).
47 Okahata, Y., Enna, G., Taguchi, K. & Seki, T. Electrochemical permeability control through a redox bilayer film. Journal of the American Chemical Society 107, 5300-5301 (1985).
48 Antonietti, M., Kaul, A. & Thuenemann, A. Complexation of lecithin with cationic polyelectrolytes:" Plastic membranes" as models for the structure of the cell membrane? Langmuir 11, 2633-2638 (1995).
49 Antonietti, M., Wenzel, A. & Thünemann, A. The “egg-carton” phase: A new morphology of complexes of polyelectrolytes with natural lipid mixtures. Langmuir 12, 2111-2114 (1996).
50 Mezzenga, R. et al. Frustrated self-assembly of dendron and dendrimer-based supramolecular liquid crystals. Soft Matter 5, 92-97 (2009).
51 Eghtesadi, S. A. et al. Hierarchical self-assembly of zwitterionic dendrimer-anionic surfactant complexes into multiple stimuli-responsive dynamic nanotubes. Nanoscale 10, 1411-1419, doi:10.1039/C7NR07950H (2018).
52 Sidhu, J. et al. Interactions of poly (amidoamine) dendrimers with the surfactants SDS, DTAB, and C12EO6: an equilibrium and structural study using a SDS selective electrode, isothermal titration calorimetry, and small angle neutron scattering. Langmuir 20, 9320-9328 (2004).
53 Bakshi, M. S. et al. Topographical and photophysical properties of poly (amidoamine) dendrimers with ionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 266, 181-190 (2005).
54 Wu, Q., Cheng, Y., Hu, J., Zhao, L. & Xu, T. Insights into the Interactions between Dendrimers and Bioactive Surfactants: 3. Size-Dependent and Hydrophobic Property-Dependent Encapsulation of Bile Salts. The Journal of Physical Chemistry B 113, 12934-12943, doi:10.1021/jp906661z (2009).
55 Yang, K. et al. Insights into the interactions between dendrimers and multiple surfactants: 5. formation of miscellaneous mixed micelles revealed by a combination of 1H NMR, diffusion, and NOE analysis. The Journal of Physical Chemistry B 114, 7265-7273 (2010).
56 Fang, M. et al. New insights into interactions between dendrimers and surfactants. 4. Fast-exchange/slow-exchange transitions in the structure of dendrimer− surfactant aggregates. The Journal of Physical Chemistry B 114, 6048-6055 (2010).
57 Cheng, Y., Wu, Q., Li, Y., Hu, J. & Xu, T. New Insights into the Interactions between Dendrimers and Surfactants: 2. Design of New Drug Formulations Based on Dendrimer− Surfactant Aggregates. The Journal of Physical Chemistry B 113, 8339-8346 (2009).
58 Cheng, Y., Li, Y., Wu, Q. & Xu, T. New insights into the interactions between dendrimers and surfactants by two dimensional NOE NMR spectroscopy. The Journal of Physical Chemistry B 112, 12674-12680 (2008).
59 Liu, C.-Y., Chen, H.-L., Do, C. & Hong, K. Spatial distributions of guest molecule and hydration level in dendrimer-based guest–host complex. ACS Macro Letters 5, 1004-1008 (2016).
60 Liu, C.-Y. & Chen, H.-L. Undulating the Lamellar Interface of Polymer–Surfactant Complex by Dendrimer. Macromolecules 50, 6501-6508 (2017).
61 Antonietti, M., Henke, S. & Thünemann, A. Highly ordered materials with ultra-low surface energies: Polyelectrolyte–surfactant, complexes with fluorinated surfactants. Advanced Materials 8, 41-45, doi:10.1002/adma.19960080106 (1996).
62 Antonietti, M., Conrad, J. & Thuenemann, A. Polyelectrolyte-surfactant complexes: a new type of solid, mesomorphous material. Macromolecules 27, 6007-6011 (1994).
63 Hu, J., Cheng, Y., Ma, Y., Wu, Q. & Xu, T. Host− Guest Chemistry and Physicochemical Properties of the Dendrimer− Mycophenolic Acid Complex. The Journal of Physical Chemistry B 113, 64-74 (2008).
64 Wang, X. et al. Characterizations of Polyamidoamine Dendrimers with Scattering Techniques. Polymers 4, 600-616 (2012).
65 Jackson, C. L. et al. Visualization of dendrimer molecules by transmission electron microscopy (TEM): Staining methods and cryo-TEM of vitrified solutions. Macromolecules 31, 6259-6265 (1998).
66 Soininen, A. J. et al. Self-assembly and induced circular dichroism in dendritic supramolecules with cholesteric pendant groups. Journal of the American Chemical Society 132, 10882-10890 (2010).
67 Ali, A., Malik, N. A., Uzair, S. & Ali, M. Conductometric and fluorometric studies of sodium dodecyl sulphate in aqueous solution and in the presence of amino acids. Molecular Physics 112, 2681-2693 (2014).