簡易檢索 / 詳目顯示

研究生: 許夢舫
Meng-Fang Hsu
論文名稱: 以鈣鈦礦(Perovskite)結構之材料製作固態氧化物燃料電池(SOFC)
指導教授: 吳振名
Jenn-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 111
中文關鍵詞: 中溫固態氧化物燃料電池鈣鈦礦結構鎵酸鑭
外文關鍵詞: IT-SOFC, perovskite, lanthanum gallate
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為發展中溫固態氧化物燃料電池(IT-SOFCs)本實驗以LaGaO3基材系列固態氧化物為電解質,此氧化物在中低溫度範圍內(600~800℃)具有穩定且高的氧離子傳導特性,因此本實驗選用在鑭鎵氧化物裡參雜Sr及Mg (LSGMg) 作為電池的電解質材料,所搭配的陽極為與電解質結構相同的鑭鎵氧化物中添加Sr與Mn(LSGMn),陰極為常見的鑭鍶鈷氧化物(LSC),希望藉由此三種材料的搭配能達到最佳的單電池結構。
    我們已從電解質、陽極、陰極的燒結行為,可得到其個別的最佳燒結條件,電解質LSGMg在1450℃下燒結4小時,相對密度可達96%,陽極LSGMn,Mn含量的增加可提升導電度,且最佳燒結溫度為1400℃,陰極LSC之最佳燒結溫度為1200℃,且於800℃下的導電度為1711S/cm,與文獻上相近;亦能夠用等效電路模擬阻抗的分析圖,區分材料本身、晶粒界面及電解質與電極界面所貢獻的阻抗。電池結構則以電解質為支撐,厚度約為1mm,陽極與陰極以網印方法分別網印於電解質上,且能成功地量測到電池的I-V特徵曲線,工作溫度800℃下可得到最高的功率密度為366mW/cm2,未來目標則朝降低電解質厚度及提高陽極導電率方向改進以提升電池的性能。


    摘要.................................................... Ⅰ 誌謝.................................................... Ⅱ 目錄.................................................... Ⅲ 表目錄 ................................................. Ⅵ 圖目錄 ................................................. Ⅶ 第一章 緒論 ...........................................1 1-1 前言 ..............................................1 1-2 研究動機 ..........................................2 第二章 文獻回顧 ......................................... 4 2-1 燃料電池之簡介 ................................... 4  2-2 燃料電池之極化 ................................... 5 2-3 燃料電池之種類 ................................... 7  2-4 固態氧化物燃料電池(SOFC) ......................... 8   2-4-1 SOFC之原理 ................................... 8   2-4-2 SOFC之結構設計 ............................... 9 2-4-3 SOFC之優點及應用 .............................11  2-5 SOFC之材料選擇 ...................................11 2-5-1 電解質材料 ...................................11 2-5-2 陰極材料 .....................................16 2-5-3 陽極材料 .....................................17   2-6 SOFC之製作方式 .................................18 第三章 實驗程序 ........................................27  3-1 粉末準備 .........................................27 3-2 固態反應法製備粉末 ...............................27 3-3 乾壓法製備試片 ...................................28 3-4 網印法製備陽極、陰極 .............................29 3-5 特性分析 .........................................29 3-5-1 XRD繞射分析 ..................................29 3-5-2 相對密度與開放孔隙度量測 .....................29 3-5-3 尺寸收縮量測 .................................31 3-5-4 導電度量測 ...................................31 3-5-5 阻抗分析與模擬 ...............................32 3-5-6 SEM微觀結構分析 ..............................33 3-5-7 X-ray微區定性分析 ............................33 3-5-8 電池I-V特徵曲線量測 ..........................33 第四章 結果與討論 ......................................39 4-1 電解質 ...........................................39 4-1-1 X光結晶繞射分析 ..............................39 4-1-2 燒結行為(相對密度、開放孔隙度、尺寸收縮) .....39 4-1-3 微觀結構 .....................................40 4-2 陰極 .............................................41 4-2-1 X光結晶繞射分析 ..............................41 4-2-2 燒結行為(相對密度、開放孔隙度、尺寸收縮) .....41 4-2-3 導電率 .......................................41 4-2-4 網印後之微觀結構 .............................42 4-3 陽極 .............................................42 4-3-1 X光結晶繞射分析 ..............................42 4-3-2 燒結行為(相對密度、開放孔隙度、尺寸收縮) .....42 4-3-3 導電率 .......................................43 4-3-4 網印後之微觀結構 .............................44 4-4 添加pore former (starch)對陽極的影響..............44 4-4-1 燒結行為(相對密度、開放孔隙度、尺寸收縮) .....44 4-4-2 導電率 .......................................45 4-4-3 網印後之微觀結構 .............................45 4-5 阻抗分析 .........................................46 4-6 單電池結構 .......................................49 4-6-1 電極與電解質界面之微區X光定性分析(EDS) .......49 4-6-2 電池導電率 ...................................50 4-6-3 電池I-V、I-P特徵曲線 .........................50 4-6-3-1 LSC/LSGMg/LSGMn ..........................50 4-6-3-2 LSC/LSGMg/LSGMn+starch ...................52 4-7 降低陽極燒結溫度對電池特性之影響 .................53 4-7-1 電極與電解質界面之微區X光定性分析(EDS) .......53 4-7-2 電池I-V、I-P特徵曲線 .........................53 4-7-2-1 LSC/LSGMg/LSGMn-1300 .....................53 4-7-2-2 Pt/LSC/LSGMg/LSGMn43-1300/Pt .............54 第五章 結論 ............................................55 參考資料 ................................................57

    [1]N. Q. Minh, “Ceramics Fuel Cells”, J. Am. Ceram. Soc., 76 [3] (1993) 563-588.
    [2]A. B. Stambouli and E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy”, Renewable & Sustainable Energy Reviews, 6 (2002) 433-455.
    [3]S. P. S. Badwal, “Stability of solid oxide fuel cell components”, Solid State Ionics, 143 (2001) 39-46.
    [4]H. Yohiro, K. Eguchi and H. Arai, “Ionic conduction and microstructure of the ceria-strontia system”, Solid State Ionics, 21 (1986) 37-47.
    [5]T. Ishihara, H. Matsuda, and Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor”, J. Am. Chem. Soc., 116 (1994) 3801-3803.
    [6]N. M. Sammes, G. A. Tompsett, H. Nafe and F. Aldinger, “Review Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity”, Journal of European Ceramic Society, 19 (1999) 1801-1826.
    [7]C. Barthet, B. Pintault and J. Y. Poinso, “A New electroylyte for Medium Operating temperature SOFCs”, Electrochemical Society Proceeding, Vol. 2001-16 (2001) 431-436.
    [8]K. Huang and J. B. Goodenough, “A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer”, Journal of Alloys and Compounds, 303-304 (2000) 454-464.
    [9]W. R. Grove, “On Voltavic Series and the Combination of Gases by Platium”, Philos. Mag, 14 (1839) 127.
    [10]P. Zegers, “Fuel Cell in Europe”, Journal of Power Sources, 29 (1990) 133-142.
    [11]J. Larminie and A. Dicks, “Fuel Cell System Explained”, 1th Edition, JOHN WILEY & SONS, Inc. , England, 2000.
    [12]J. B. Goodenough, “Oxide-Ion Electrolytes”, Annu. Rev. Mater., Res. 33 (2003) 91-128.
    [13]K. Kordesch and G. Simader, “Fuel Cells and Their Applications”, VCH, New York, 1996.
    [14]鄭耀宗、徐耀昇, “燃料電池技術進展的現況分析”, 燃料電池論文集, 工業技術研究院能源與資源研究所, 1999.
    [15]A. O. Iesenberg, “Fuel cell generator”, US Patent No.4395468 (1983).
    [16]N. Q. Minh, C. E. Mcpheeters, and J. E. Brule, “Monolithic Solid Oxide Fuel Cell Technology Development Phase IA”, Final Report, (1989).
    [17]D. C. Fee et al., Fuel Cell Seminar Abstracts, (1986) 40.
    [18]S. Majumdar, T. Claar and B. Flandermayer, “Stress and Fracture- Behavior of Monolithic Fuel-Cell Tapes”, J Am. Ceram. Soc., 69 (1986) 628.
    [19]M. S. S. Hsil, W. E. Morrow and J. B. Goodenough, in “Proceedings of the 10th intersociety Energy Conversion Engineering Conference”, 555(1975).
    [20]B. C. H. Steele, C. A. Leach, R. A. Rudkin, N. Khan and M.H. Huang, 1990 Fuel Cell Seminar in Arizona(USA), 123(1990).
    [21]T. Ishihara, H. Matsuda and Y. Takita, “Effect of rare earth cations doped for La stie on the oxide ionic conductivity of LaGaO3-based perovskite type oxide”, Solid State Ionics 79 (1995) 147-151.
    [22]Y. M. Chiang, D. Birnie and W.D. Kingery, “PHYSICAL CERAMICS” New York : J. Wiley (1997).
    [23]Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda and N. Imanishai, “Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides system)”, Solid State Ionics 121 (1999) 133.
    [24]S.P.S. Badwal and J. Drennan, “Yttria-zirconia: effect of microstructure on conductivity”, Journal of Materials Science 22 (1987) 3231.
    [25]H. Yahiro, Y. Eguchi, K. Eguchi and H. Arai, “Oxygen Ion Conductivity of the Ceria-Samarium Oxide System with Fluorite Structure”, J. Appl. Electrochem. 18 (1988) 527.
    [26]K. Eguchi, “Ceramic materials containing rare earth oxides for solid oxides for solid oxide fuel cell”, J. of Alloys and Compounds, 250 (1997) 486.
    [27]F. M. B. Marques and L. M. Navarro, “Performance of double layer electrolyte cells PartⅠ: Model behavior”, Solid State Ionics 90 (1996) 183.
    [28]T. Inoue, T. Setoguchi, K. Eguchi and H. Arai, “Study of a solid oxide fuel cell with a ceria-based solid electrolyte”, Solid State Ionics 85 (1989) 285-291.
    [29]J. Yan and M. Greenblatt, “Ionic conductivities of Bi4V2−xMxO11−x/2 (M = Ti, Zr, Sn, Pb) solid solutions ”, Solid State Ionics 81 (1995) 225-233.
    [30]K. Yamaji, T. Horita, M. Ishikawa, N. Sakai and H. Yokawa, “Compatibility of La0.9Sr0.1Ga0.8Mg0.2O2.85 as the electrolyte for SOFCs”, Solid State Ionics 108 (1998) 415-421.
    [31]T. Fukui, S. Ohara, K.. Murata, H. Yoshida, H. Miura and T. Inagaki, “Performance of intermediate temperature solid oxide fuel cells with La(Sr)Ga(Mg)O3 electrolyte film”, Journal of Power Sources 106 (2002) 142-145.
    [32]R. Pelosato, I. Natali Sora, V. Ferrari, G.Dotelli and C.M. Mari, “Preparation and characterization of supported La0.83Sr0.17Ga0.83Mg0.17O2.83 thick films for application in IT-SOFCs”, Solid State Ionics 175 (2004) 87-92.
    [33]K. Huang, R. S. Tichy, and J. B. Goodenough, “Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3:I, Phase Relationships and Electrical Properties”, J. Am. Ceram. Soc. 81 [10] (1998) 2565–75.
    [34]K. Huang, R. S. Tichy and J. B. Goodenough, “Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3 : II, AC Impedance Spectroscopy”, J. Am. Ceram. Soc. 81 [10] (1998) 2576-80.
    [35]K. Huang, R. S. Tichy and J. B. Goodenough, “Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3:III, Performance Tests of Single Ceramic Fuel Cells”, J. Am. Ceram. Soc. 81 [10] (1998) 2581-85.
    [36]D. Lybye , F. W. Poulsen and M. Mogensen, “Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites”, Solid State Ionics 128 (2000) 91–103.
    [37]T. Y. Chen and K. Z. Fung, “Comparison of dissolution behavior and ionic conduction between Sr and/or Mg doped LaGaO3 and LaAlO3”, Journal of Power Sources 132 (2004) 1–10.
    [38]S. B. Adler, “Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δ electrodes”, Solid State Ionics 111 (1998) 125-134.
    [39]S. Tanasescu, N. D. Totir and D. I. Marchidan, “Thermodynamic properties of some perovskite type oxide used as SOFC cathode materials”, Solid State Ionics 119 (1999) 311.
    [40]E. Maguire, B. Gharbage, F. M. B. Marques and J. A. Labrincha, “Cathode materials for intermediate temperature SOFCs”, Solid State Ionics 127 (2000) 329
    [41]A. Hartley, M. Sahibzada, M. Weston, I.S. Metcalfe and D. Mantzavinos, “La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells”, Catalysis Today 55 (2000) 197.
    [42]O. Yamamoto, Y. Takeda, R. Kanno and M. Noda, “Perovskite-type Oxides as Oxygen Electrodes for High Temperature Solid Oxide Fuel Cells”, Solid State Ionics 22 (1987) 241-246.
    [43]S. P. Jiang, “Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells”, Journal of Power Sources 124 (2003) 390-402.
    [44]T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber and E. Ivers-Tiffee, “Stability at La0.6Sr0.4CoO3-d cathode /La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte interface under current flow for solid oxide fuel cells”, Solid State Ionics 138 (2000) 143–152.
    [45]C. Xia, W. Rauch, F. Chen and M. Liu, “Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs”, Solid State Ionics 149 (2002) 11-19.
    [46]Y. Liu, W. Rauch, S. Zha and M. Liu, “Fabrication of Sm0.5Sr0.5CoO3-d -Sm0.1Ce0.9O2-d cathodes for solid oxide fuel cells using combustion CVD”, Solid State Ionics 166 (2004) 261–268.
    [47]J. Mizusaki, H. Tagawa, Y. Miyaki, S. Yamauchi and K. Hirano, “Kinetics of The Electrode Reaction at the CO-CO2, Porous Pt/Stabilized Zirconia Interface”, Solid State Ionics 53 (1992) 126-134.
    [48]W. Z. Zhu and S. C. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Materials Science and Engineering A362 (2003) 228–239.
    [49]S. P. Jiang and S. H. Chan, “A review of anode materials development in solid oxide fuel cells”, J. Mater. Sci. (2004) 4405 – 4439.
    [50]A. Ringuede, J. A. Labrincha and J. R. Frade, “A combustion synthesis method to obtain alternative cermet materials for SOFC anodes”, Solid State Ionics 141–142 2001 549–557.
    [51]D. Simwonis, F. Tietz and D. Stover, “Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells”, Solid State Ionics 132 (2000) 241-251.
    [52]F. Chen and M. Liu, “Study of transition metal oxide doped LaGaO3 as electrode materials for LSGM-based solid oxide fuel cells”, J Solid State Electrochem 3 (1998) 7-14.
    [53]Q. Fu, X. Xu, D. Peng, X. Liu and G. Meng, “Preparation and electrochemical characterization of Sr- and Mn-doped LaGaO3 as anode materials for LSGM-based SOFCs”, J. Mater. Sci. 38 (2003) 2901 – 2906.
    [54]N. Maffei and G. de Silveira, “Interfacial layers in tape cast anode-supported doped lanthanum gallate SOFC elements”, Solid State Ionics 159 (2003) 209– 216.
    [55]S. Tao and J. T. S. Irvine, “A redox-stable efficient anode for solid-oxide fuel cells”, Nature Materials 2 (2003) 320-323.
    [56]J. Sfeir, “LaCrO3-based anodes: stability considerations”, Journal of Power Sources 118 (2003) 276–285.
    [57]S. P. Yoon, J. Han, S. W. Nam, T. H. Lim, I. H. Oh, S. A. Hong, Y. S. Yoo and H. C. Lim, “Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol-gel coating technique”, Journal of Power Sources 106 (2002) 160.
    [58]S. G. Kim, S. P. Yoon, S. W. Nam, S. H. Hyun and S. A. Hong, “Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method”, Journal of Power Sources 110 (2002) 222.
    [59]G. L. Bertrand, G. Caboche and L-D. Dufour, “Low-pressure- MOCVD LaMnO3±δvery thin films on YSZ(100) optimized for studies of the triple phase boundary”, Solid State Ionics 129 (2000) 219.
    [60]K. Hayashi, O. Yamamoto, Y. Nishigaki and H. Minoura, “Sputtered La0.5Sr0.5MnO3-yttria stabilized zirconia composite film electrodes for SOFC”, Solid State Ionics 98 (1997) 49.
    [61]J. Will, M. K. M. Hruschka, L. Gubler and L. J. Gauckler, “Electrophoretic Deposition of Zirconia on Porous Anodic Substrates”, J. Am. Ceram. Soc. 84[2] (2001) 328.
    [62]T. Mathews, J. R. Sellar and B. C. Muddle, “Pulsed Laser Deposition of Doped Lanthanum Gallate and In Situ Analysis by Mass Spectrometry of the Laser Ablation Plume”, Chem. Mater. 12 (2000) 917-922.
    [63]M. Joseph, P. Manoravi, H. Tabata and T. Kawai, “Preparation of La0.9Sr0.1Ga0.85Mg0.15O2.875 thin films by pulsed-laser deposition and conductivity studies”, Journal of Applied Physics 92[2] (2002) 997-1001.
    [64]D. Simwonis, H. Thulen, F.J. Dias, A. Naoumidis, D. Stover, “Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix process”, Journal of Materials Processing Technology 92-93 (1999) 107-111.
    [65]J. Y. Yi and G. M. Choi, “Cathodic properties of La0.9Sr0.1MnO3 electrode for fuel cells based on LaGaO3 solid electrolyte”, Journal of the European Ceramic Society 24 (2004) 1359-1363.
    [66]C. Xia and M. Liu, “Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing”, Solid State Ionics 144 (2001) 249.
    [67]C. Xia and M. Liu, “A Simple and Cost-Effective Approach to Fabrication of Dense Ceramic Membranes on Porous Substrates”, J. Am. Ceram. Soc. 84[8] (2001) 1903.
    [68]J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis and L.J. Gauckler, “Fabrication of thin electrolytes for second-generation solid oxide fuel cells”, Solid State Ionics 131 (2000) 79.
    [69]J. T. Jones and M. F. Berard, “Ceramics-Industrial Processing and Tesing” 104-113.
    [70]Standard Test Method for “Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products”, Designation C 373-72 (Reapproved 1982).
    [71]D. K. Schroder, “Semiconductor Material and Device Characterization”, John Wiley & Sons, Inc. (1998) 14-16.
    [72]J. R. Macdonald, “Impedance Spectroscopy Emphasizing Solid Materials and Systems”, John Wiley & Sons, Inc. (1987).
    [73]E. J. Abram, D. C. Sinclair and A. R. West, “A Strategy for Analysis and Modelling of Impedance Spectroscopy Data of Electroceramics: Doped Lanthanum Gallate”, Journal of Electroceramics 10 (2003) 165-177.
    [74]D. C. Sinclair and A. R. West, “Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance”, J. Appl. Phys. 66 [8] (1989) 3850-3856.
    [75]H. Ullman, N. Trofimenko, F. Tietz, D. Stöver and A. Ahmad-Khanlou, “Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes”, Solid State Ionics 138 (2000) 79-90.
    [76]E. J. Abram, D. C. Sinclair and A. R. West, “Electrode-Contact Spreading Resistance Phenomena in Doped-Lanthanum Gallate Ceramics”, Journal of Electroceramics 7 (2001) 179-188.
    [77]張建松,“固態氧化物燃料電池(SOFC)單電池結構之製作”, 清華大學,碩士論文, (2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE