簡易檢索 / 詳目顯示

研究生: 陳柏翰
Chen, Bo-Han
論文名稱: 從人類大腦內部模型觀點來探討具有估測器五自由度類人型雙足機器人行走的強健適應性模糊追蹤控制
Robust adaptive fuzzy estimator-based tracking control of 5-DOFs human-like biped robot locomotion with internal models in human brain
指導教授: 陳博現
Chen, Bor-Sen
口試委員: 黃志良
曾仲熙
李柏坤
林志民
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
中文關鍵詞: 適應性模糊強健控制雙足機器人線性矩陣不等式內部模型
外文關鍵詞: adaptive fuzzy, h-infinity robust control, biped robot, LMIP, internal models
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The viewpoint about human how to control themselves to achieve the assigned movements provides important reference materials for developing a control scheme to the human-like biped robot. In this paper, the human sensorimotor control consists of two control forces, i.e., an inverse control force in the feedforward loop and a feedback control force in the internal feedback loop to construct a robust tracking control scheme for 5-DOFs human-like biped robot. The inverse model with adaptive fuzzy dynamic in human brain provides an inverse control force to compensate most of system dynamics in a feedforward way. On the other hand, the internal feedback control loop that describes human spring-like muscles possesses a robust feedback control force to achieve the robust tracking with external disturbance and system uncertainty. Furthermore, if the state variables are unavailable, the forward model in the brain that behaves like a state estimator through the sensory information is utilized to predict system states for the feedforward inverse control and internal feedback control to achieve estimator- based tracking design even if the measurement noise is also considered. In addition, the proposed estimator-based control scheme based on human sensorimotor control concept can be formulated as an eigenvalue problem (EVP) with some linear matrix inequality (LMI) constraints, which can be solved very efficiently by the convex optimization techniques. Finally, a simulation example about human-like 5-DOFs biped robot is given to illustrate the design procedure and to confirm the performance of the proposed method.


    近幾年來,機器人系統的控制問題已經廣泛的被研究。其中包括了系統動態分析、軌跡追蹤控制、機器人行走軌跡規劃以及如何在環境的影響下讓機器人完成被指派的任務等,都是重要的相關課題。除此之外,從生物的角度來探討控制問題也逐漸受到關注,像是人類如何完成自身動作的觀點在類人型雙足機器人的控制上提供了重要的參考。本篇文章提到了人類的感覺運動控制(Sensorimotor Control)主要由兩個控制力組成,即在順向迴圈(Feedforward Loop)方向的逆向控制力以及在內回授迴圈(Internal Feedback Loop)方向的回授控制力。我們將利用此觀點來建立五自由度類人型雙足機器人的強健追蹤控制。其中在人類大腦中具有適應性動態的逆向模型(Inverse Model)提供逆向控制力以順向的方式來補償受控系統大部分動態。另一方面,描述人類肌肉系統的內回授迴圈具有強健回授控制力以達到強健追蹤控制即使受到外部干擾以及受控系統不確定性的影響。再者,在受控系統狀態不可得知的情形下,在大腦中的順向模型(Forward Model)可透過感知的量測資訊來預測受控系統狀態以達到強健估測考量下的追蹤控制即使受到量測雜訊的影響。此外,本研究提出的控制架構可以轉換成求解含有線性矩陣不等式(Linear Matrix Inequality, LMI)限制條件的特徵值問題(Eigenvalue Problem, EVP),而線性矩陣不等式則可以利用最佳化方法有效的求解。

    1 Introduction 2 5-DOFs Human-like Biped Robot Dynamics Analysis 2.1 Biped Locomotion 2.2 Biped Dynamic Model Development 2.3 Reference Model 3 Robust Adaptive Fuzzy H∞ Tracking Control Scheme without Estimator 3.1 Error Dynamic Development with Inverse Model in Human Brain 3.2 Intelligent Fuzzy Logic System 3.3 Robust H∞ Tracking Control Performance 4 Robust Adaptive Fuzzy H∞ Estimator-based Tracking Control Scheme 4.1 Error Dynamic Development with Internal Models in Human Brain 4.2 Robust H∞ Estimator-based Tracking Control Performance 5 Simulations 6 Conclusions Bibliography

    [1] X. P. Mu and Q. Wu, "On impact dynamics and contact events for biped robots via impact effects," IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 36, pp. 1364-1372, Dec 2006.
    [2] Y. Hurmuzlu, "Dynamics of Bipedal Gait .1. Objective Functions and the Contact Event of a Planar 5-Link Biped," Journal of Applied Mechanics-Transactions of the Asme, vol. 60, pp. 331-336, Jun 1993.
    [3] S. Tzafestas, et al., "Robust sliding-mode control applied to a 5-link biped robot," Journal of Intelligent & Robotic Systems, vol. 15, pp. 67-133, Jan 1996.
    [4] J. W. Grizzle, et al., "Asymptotically stable walking for biped robots: Analysis via systems with impulse effects (vol 46, pg 51, 2001)," IEEE Transactions on Automatic Control, vol. 46, pp. 513-513, Mar 2001.
    [5] Y. C. Chang and B. S. Chen, "A nonlinear adaptive H-infinity tracking control design in robotic systems via neural networks," IEEE Transactions on Control Systems Technology, vol. 5, pp. 13-29, Jan 1997.
    [6] B. S. Chen, et al., "Robust tracking enhancement of robot systems including motor dynamics: A fuzzy-based dynamic game approach," IEEE Transactions on Fuzzy Systems, vol. 6, pp. 538-552, Nov 1998.
    [7] Q. Huang, et al., "A high stability, smooth walking pattern for a biped robot," Icra '99: IEEE International Conference on Robotics and Automation, Vols 1-4, Proceedings, pp. 65-71, 1999.
    [8] Q. Huang, et al., "Planning walking patterns for a biped robot," IEEE Transactions on Robotics and Automation, vol. 17, pp. 280-289, Jun 2001.
    [9] L. S. You and B. S. Chen, "Tracking Control Designs for Both Holonomic and Nonholonomic Constrained Mechanical Systems - a Unified Viewpoint," International Journal of Control, vol. 58, pp. 587-612, Sep 1993.
    [10] S. K. Agrawal and A. Fattah, "Motion control of a novel planar biped with nearly linear dynamics," IEEE-Asme Transactions on Mechatronics, vol. 11, pp. 162-168, Apr 2006.
    [11] E. R. Westervelt, Feedback control of dynamic bipedal robot locomotion. Boca Raton: CRC Press, 2007.
    [12] D. Liberzon, Switching in systems and control. Boston, MA: Birkhauser, 2003.
    [13] C. M. Lin and Y. F. Peng, "Adaptive CMAC-based supervisory control for uncertain nonlinear systems," IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 34, pp. 1248-1260, Apr 2004.
    [14] Y. F. Peng and C. M. Lin, "Intelligent hybrid control for uncertain nonlinear systems using a recurrent cerebellar model articulation controller," IEEE Proceedings-Control Theory and Applications, vol. 151, pp. 589-600, Sep 2004.
    [15] S. G. Tzafestas, et al., "Robust sliding-mode control of nine-link biped robot walking," Journal of Intelligent & Robotic Systems, vol. 20, pp. 375-402, Oct-Dec 1997.
    [16] C. S. Tseng, et al., "Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model," Ieee Transactions on Fuzzy Systems, vol. 9, pp. 381-392, Jun 2001.
    [17] M. Kawato, "Internal models for motor control and trajectory planning," Current Opinion in Neurobiology, vol. 9, pp. 718-727, Dec 1999.
    [18] N. Bhushan and R. Shadmehr, "Computational nature of human adaptive control during learning of reaching movements in force fields," Biological Cybernetics, vol. 81, pp. 39-60, Jul 1999.
    [19] M. Desmurget and S. Grafton, "Forward modeling allows feedback control for fast reaching movements," Trends in Cognitive Sciences, vol. 4, pp. 423-431, Nov 2000.
    [20] L.-X. Wang, A course in fuzzy systems and control. Upper Saddle River, N.J.: Prentice Hall PTR, 1997.
    [21] S. P. Boyd, Linear matrix inequalities in system and control theory. Philadelphia: Society for Industrial and Applied Mathematics, 1994.
    [22] L. Sciavicco and B. Siciliano, Modelling and control of robot manipulators. London ; New York: Springer, 2000.
    [23] C. C. A. M. Gielen and J. C. Houk, "A Model of the Motor Servo - Incorporating Nonlinear Spindle Receptor and Muscle Mechanical-Properties," Biological Cybernetics, vol. 57, pp. 217-231, 1987.
    [24] D. Driankov, et al., An introduction to fuzzy control. Berlin ; New York: Springer-Verlag, 1993.
    [25] M. Jamshidi, et al., Fuzzy logic and control : software and hardware applications. Englewood Cliffs, N.J.: PTR Prentice Hall, 1993.
    [26] J. J. E. Slotine and W. Li, Applied nonlinear control. Englewood Cliffs, N.J.: Prentice Hall, 1991.
    [27] J.-S. R. Jang, et al., Neuro-fuzzy and soft computing : a computational approach to learning and machine intelligence. Upper Saddle River, NJ: Prentice Hall, 1997.
    [28] L.-X. Wang, Adaptive fuzzy systems and control : design and stability analysis. Englewood Cliffs, N.J.: PTR Prentice Hall, 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE