研究生: |
羅大倫 Bertrand Lo |
---|---|
論文名稱: |
以綠色化學技術開發低維度氧化鋅奈米材料製備及超臨界二氧化碳清洗反應性離子蝕刻後殘餘物之方法 Green Chemical Approaches toward Preparation of Low Dimensional ZnO and Removal of post-RIE Polymer Residue in Supercritical Carbon Dioxide |
指導教授: |
凌永健
Yong-Chien Ling |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 超臨界流體 、綠色化學 、去光阻 、氧化鋅 、液滴傳輸 、晶種媒介法 |
外文關鍵詞: | supercritical fluid, green chemistry, photoresist stripping, zinc oxide, droplet transportation, seed-mediated route |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著資源的日漸短缺,工業生產逐漸將環境保護與資源使用效率視為永續發展的核心概念之一。除了傳統的廢棄-回收的簡單低效率技術外,綠色化學更進一步將概念擴展至將能源、物質與時間等資源的高使用/轉換效率,視為減少對環境衝擊的根本方法。因此近年來無論產官學界均逐漸將綠色化學的概念導入各種生產研發過程。
本論文著重於以綠色化學角度開發氧化鋅奈米結構材料,及超臨界二氧化碳流體進行晶圓表面光阻殘餘物的清洗技術等兩部份。首先開發熱裂解法製備出高均勻度氧化鋅奈米粒子(第二章),並利用此高均勻度的氧化鋅奈米粒子進行晶種媒介法而得到高長寬比的氧化鋅奈米柱(第三章)。由於製備過程避免使用多重溶劑,且利用材料本身的特性達到有效控制奈米結構的成果。因此這些技術可以進一步應用於其他類似晶體特性的材料。
第二部份則針對改善高耗水且容易釋放揮發性有機物的半導體清洗製程,由於氯氣電漿蝕刻後易導致光阻本身變質,而在後續的乾式去光阻製程發現移除不完全的現象。本研究即致力於導入超臨界二氧化碳做為氧化降解試劑的分散載體,利用超臨界二氧化碳低表面張力的特性協助反應試劑傳輸至光阻殘餘物表面,並改善反應試劑於兩相間的傳輸效率(第四章)。本文亦提出助溶劑於超臨界二氧化碳中形成液滴的觀點,輔助反應試劑的傳送。並進一步利用蒙地卡羅法模擬液滴的成長與碎裂過程,觀察液滴與樣品表面的接觸效率。研究的結果初步指出助溶劑液滴的概念有助於解釋部份超臨界二氧化碳流體的萃取與反應行為。
Owing to lack of the natural resources on Earth gradually, the environmental
protection and the efficiency of resource usage become the core concept for the industrial
production. In addition to the waste recycling techniques, Green Chemistry further
provides the viewpoint of maximizing the usage and transformation efficiency in the
energy, materials, time as a fundamental methodology. Therefore, the fields including
academic, officials, and industrial circles gradually introduce Green Chemistry in the
activities of production and researching.
This dissertation was divided into two distinct sections which the first is the
synthesis of ZnO nanostructures, and the second is the removal of post-RIE (reactive ion
etching) polymer residue by scCO2-assisted oxidative degradation. In the first chapter, the
pyrolysis of zinc acetate dihydrate was used to control the growth of ZnO nanoparticles.
Then, this technique was combined with a seed-mediated method to synthesize the ZnO
nanorods of high aspect ratio (Chapter 3). In addition to avoid using multiple solvents in
the traditional hot soup route, the character of crystal structure was also incorporated in
the oriented growth of nanorods. This technique could be applied to the materials of
similar crystals structures.
The second section was focused on the high consumption of water and organic
solvent in the cleaning process of semiconductor manufacturing. Especially after the
treatment of chlorine plasma etching usually results in the photoresist hard to completely
remove by the oxygen plasma ashing. The third chapter introduced scCO2 as a carrier
medium to assist the oxidative degradation reagent reaching on the surface of post-RIE
polymer residue. The advantage of zero surface tension of scCO2 also improves the
biphasic transportation of oxidative reagent between the cosolvent droplet and the
polymer residue. In the last chapter, Monte Carlo method was introduced to simulate the
possible aggregation and breakage of cosolvent droplets. The surface area of cosolvent
droplets was considered as the index for the contact possibility of oxidative reagent and
polymer residue. The preliminary results demonstrated the instable cosolvent droplets
could be an explanation for the behavior of supercritical fluid and cosolvent in the
extraction and reaction. Our work also provides a framework of researching tool in the
related unstable biphasic process.
Chapter 1.
1. P. T. Anastas and J. C. Warner, Green chemistry : theory and practice, Oxford University Press, Oxford [England] ; New York, 1998.
2. G. Brumfiel, Nature, 2004, 431, 622-623.
3. S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim and L. A. Boatner, J. Appl. Phys., 2003, 93, 1-13.
4. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, Appl. Phys. Lett., 2002, 81, 3648-3650.
5. P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He and H. J. Choi, Adv. Funct. Mater., 2002, 12, 323-331.
6. J. H. Hu and R. G. Gordon, J. Appl. Phys., 1992, 71, 880-890.
7. R. Seshadri, Curr. Opin. Solid. State. Mater. Sci., 2005, 9, 1-7.
8. J. Q. Xu, Q. Y. Pan, Y. A. Shun and Z. Z. Tian, Sens. Actuator B-Chem., 2000, 66, 277-279.
9. P. Mitra, A. P. Chatterjee and H. S. Maiti, Mater. Lett., 1998, 35, 33-38.
10. J. S. Lee, K. Park, M. I. Kang, I. W. Park, S. W. Kim, W. K. Cho, H. S. Han and S. Kim, J. Cryst. Growth, 2003, 254, 423-431.
11. H. D. Alamdari, S. Boily, M. Blouin, A. Van Neste and R. Schulz, in Metastable, Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2, 2000, pp. 909-917.
12. L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu and W. F. Zhang, J. Phys. Chem. C, 2007, 111, 1900-1903.
13. V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui and C. Surya, Appl. Phys. Lett., 2003, 83, 141-143.
14. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, J. Appl. Phys., 2005, 98.
15. L. Spanhel and M. A. Anderson, J. Am. Chem. Soc., 1991, 113, 2826-2833.
16. D. H. Bao, H. S. Gu and A. X. Kuang, Thin Solid Films, 1998, 312, 37-39.
17. C. Pacholski, A. Kornowski and H. Weller, Angew. Chem., Int. Ed., 2002, 41, 1188-1191.
18. L. Guo, Y. L. Ji, H. B. Xu, P. Simon and Z. Y. Wu, J. Am. Chem. Soc., 2002, 124, 14864-14865.
19. K. Govender, D. S. Boyle, P. O'Brien, D. Binks, D. West and D. Coleman, Adv. Mater., 2002, 14, 1221-1224.
20. D. Qian, J. Z. Jiang and P. L. Hansen, Chem. Commun., 2003, 1078-1079.
21. L. Znaidi, G. Illia, S. Benyahia, C. Sanchez and A. V. Kanaev, Thin Solid Films, 2003, 428, 257-262.
22. B. Liu and H. C. Zeng, J. Am. Chem. Soc., 2003, 125, 4430-4431.
23. K. R. Brown, D. G. Walter and M. J. Natan, Chem. Mater., 2000, 12, 306-313.
24. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, J. Appl. Phys., 1996, 79, 7983-7990.
25. G. A. M. Diepen and F. E. C. Scheffer, J. Am. Chem. Soc., 1948, 70, 4085-4089.
26. P. G. Jessop and W. Leitner, Chemical synthesis using supercritical fluids, Wiley-VCH, 1999.
27. A. O'Neil and J. J. Watkins, Green Chemistry, 2004, 6, 363-368.
28. E. J. Beckman, J. Supercrit. Fluids, 2004, 28, 121-191.
29. P. A. Charpentier, J. M. DeSimone and G. W. Roberts, in Clean solvents : alternative media for chemical reactions and processing, eds. M. A. Abraham and L. Moens, American Chemical Society, 2002, pp. 113-135.
30. G. L. Weibel and C. K. Ober, Microelectron. Eng., 2003, 65, 145-152.
31. J. W. King and L. L. Williams, Curr. Opin. Solid. State. Mater. Sci., 2003, 7, 413-424.
32. V. K. Popov, V. N. Bagratashvili, E. N. Antonov and D. A. Lemenovski, Thin Solid Films, 1996, 279, 66.
33. J. Eastoe, S. Gold and D. C. Steytler, Langmuir, 2006, 22, 9832-9842.
34. R. o. C. Government Information Office, in http://www.gio.gov.tw/ct.asp?xItem=32738&ctNode=2589, 2007.
35. G. Levitin, S. Myneni and D. W. Hess, J. Electrochem. Soc., 2004, 151, G380-G386.
36. S. Myneni and D. W. Hess, J. Electrochem. Soc., 2003, 150, G744-G750.
37. X. G. Zhang, J. Q. Pham, H. J. Martinez, P. J. Wolf, P. F. Green and K. P. Johnston, J. Vac. Sci. Tech. B, 2003, 21, 2590-2598.
38. G. Asai, Y. Muraoka, K. Saito, I. Mizobata, T. Iwata, K. Masuda, K. Iijima, T. Yoshikawa and D. Peters, in Ultra Clean Processing of Silicon Surfaces V, 2003, pp. 297-300.
39. Y. C. Ling, B. Lo, A. Ghule, K. Y. Hsu, W. Y. Chen, C. C. Tai, T. C. Kuo and P. J. Lien, in The 3nd International Symposium on Supercritical Fluid Technology for Energy and Environment Applications, Tianjin, China, 2004, p. 15.
40. G. Manivannan and S. P. Sawan, in Materials science and process technology series;, eds. J. McHardy and S. P. Sawan, Noyes Publications, 1998, pp. 1-21.
Chapter 2
1. P. T. Anastas and J. C. Warner, Green chemistry : theory and practice, Oxford University Press, Oxford [England] ; New York, 1998.
2. G. Brumfiel, Nature, 2004, 431, 622-623.
3. L. Spanhel and M. A. Anderson, J. Am. Chem. Soc., 1991, 113, 2826-2833.
4. D. H. Bao, H. S. Gu and A. X. Kuang, Thin Solid Films, 1998, 312, 37-39.
5. C. Pacholski, A. Kornowski and H. Weller, Angew. Chem., Int. Ed., 2002, 41, 1188-1191.
6. L. Guo, Y. L. Ji, H. B. Xu, P. Simon and Z. Y. Wu, J. Am. Chem. Soc., 2002, 124, 14864-14865.
7. K. Govender, D. S. Boyle, P. O'Brien, D. Binks, D. West and D. Coleman, Adv. Mater., 2002, 14, 1221-1224.
8. D. Qian, J. Z. Jiang and P. L. Hansen, Chem. Commun., 2003, 1078-1079.
9. L. Znaidi, G. Illia, S. Benyahia, C. Sanchez and A. V. Kanaev, Thin Solid Films, 2003, 428, 257-262.
10. B. Liu and H. C. Zeng, J. Am. Chem. Soc., 2003, 125, 4430-4431.
11. K. R. Brown, D. G. Walter and M. J. Natan, Chem. Mater., 2000, 12, 306-313.
12. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, J. Appl. Phys., 1996, 79, 7983-7990.
13. V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui and C. Surya, Appl. Phys. Lett., 2003, 83, 141-143.
14. G. A. M. Diepen and F. E. C. Scheffer, J. Am. Chem. Soc., 1948, 70, 4085-4089.
15. P. G. Jessop and W. Leitner, Chemical synthesis using supercritical fluids, Wiley-VCH, 1999.
16. A. O'Neil and J. J. Watkins, Green Chemistry, 2004, 6, 363-368.
17. E. J. Beckman, J. Supercrit. Fluids, 2004, 28, 121-191.
18. G. L. Weibel and C. K. Ober, Microelectron. Eng., 2003, 65, 145-152.
19. J. W. King and L. L. Williams, Curr. Opin. Solid. State. Mater. Sci., 2003, 7, 413-424.
20. V. K. Popov, V. N. Bagratashvili, E. N. Antonov and D. A. Lemenovski, Thin Solid Films, 1996, 279, 66.
21. J. Eastoe, S. Gold and D. C. Steytler, Langmuir, 2006, 22, 9832-9842.
22. G. Levitin, S. Myneni and D. W. Hess, J. Electrochem. Soc., 2004, 151, G380-G386.
23. S. Myneni and D. W. Hess, J. Electrochem. Soc., 2003, 150, G744-G750.
24. X. G. Zhang, J. Q. Pham, H. J. Martinez, P. J. Wolf, P. F. Green and K. P. Johnston, J. Vac. Sci. Tech. B, 2003, 21, 2590-2598.
25. G. Asai, Y. Muraoka, K. Saito, I. Mizobata, T. Iwata, K. Masuda, K. Iijima, T. Yoshikawa and D. Peters, in Ultra Clean Processing of Silicon Surfaces V, 2003, pp. 297-300.
26. Y. C. Ling, B. Lo, A. Ghule, K. Y. Hsu, W. Y. Chen, C. C. Tai, T. C. Kuo and P. J. Lien, in The 3nd International Symposium on Supercritical Fluid Technology for Energy and Environment Applications, Tianjin, China, 2004, p. 15.
27. N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang and Y. Lu, Mater. Sci. Semicond. Process, 1999, 2, 247.
28. Y. Chen, D. Bagnall and T. Yao, Mater. Sci. Eng. B., 2000, 75, 190-198.
29. E. M. Wong, P. G. Hoertz, C. J. Liang, B. M. Shi, G. J. Meyer and P. C. Searson, Langmuir, 2001, 17, 8362-8367.
30. M. H. Koch, P. Y. Timbrell and R. N. Lamb, Semicond. Sci. Technol., 1995, 10, 1523.
31. Y. Lin, Zhang. Z., Z. Tang, F. Yuan and J. Li, Adv. Mater. Opt. Electron., 1999, 9, 205.
32. N. Golego, S. A. Studenikin and M. Cocivera, J. Electrochem. Soc., 2000, 147, 1592.
33. L. Vayssieres, Adv. Mater., 2003, 15, 464.
34. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater., 2003, 15, 353-389.
35. H. E. Brown, Zinc Oxide Properties and Applications, Int. Lead zinc Res. Org. Inc., Zinc Institute Inc., New York, 1983, p. 20.
36. K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist and A. Hagfeldt, Sol. Energy, 2002, 73, 51.
37. G. Gordillo and C. Calderon, Sol. Energy Mater. Sol. Cells, 2001, 69, 251.
38. J. G. Wen, J. Y. Lao, D. Z. Wang, T. M. Kyaw, Y. L. Foo and Z. F. Ren, Chem. Phys. Lett., 2003, 372, 717.
39. D. Li and H. Haneda, Chemosphere, 2003, 51, 129-137.
40. Y. Yang, X. Li, J. Chen and X. Bao, Chem. Phys. Lett., 2003, 373, 22-27.
41. T. Arii and A. Kishi, Thermochim. Acta, 2003, 400, 175-185.
42. N. Koga and H. Tanaka, Thermochim. Acta, 1997, 303, 69-76.
43. F. Quranta, A. Valentini, F. R. Rizzi and G. Casamassima, J. Appl. Phys., 1993, 74, 244.
44. H. B. Zhao, C. G. Zheng and M. H. Xu, Powder Technol., 2005, 154, 164-178.
45. K. Kobayashi, T. Matsubara, S. Matsushima, S. Shirakata, S. Isomura and G. Okada, Thin Solid Films, 1995, 266, 106-109.
46. R. Liu, A. A. Vertegel, E. W. Bohannan, T. A. Sorenson and J. A. Switzer, Chem. Mater., 2001, 13, 508.
47. P. D. Cozzoli, M. L. Curri, A. Agostiano, G. Leo and M. Lomascolo, J. Phys. Chem. B, 2003, 107, 4756-4762.
48. M. S. Tokumoto, V. Briois, C. V. Santilli and S. H. Pulcinelli, J. Sol-Gel Sci. Technol., 2003, 26, 547-551.
49. T. J. Gardner and G. J. Messing, Thermochim. Acta, 1984, 78, 17.
50. A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, J. Phys. Chem. B, 2000, 104, 1715.
51. S. Sakohara, M. Ishida and M. A. Anderson, J. Phys. Chem. B, 1998, 102, 10169-10175.
52. M. Che, C. Naccache and B. Imelik, J. Catal., 1972, 24, 328.
53. K. V. Werde, D. Mondelaers, G. Vanhoyland, D. Nelis, M. K. Van Bael, J. Mullens, L. C. Van Poucke, B. Van der Veken and H. O. Desseyn, J. Mater. Sci., 2002, 37, 81-88.
54. H. Chang, R. Murugan and A. Ghule, Thermochim. Acta, 2001, 374, 45.
55. A. L. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney and M. J. Natan, Anal. Chem., 1998, 44, 341R.
56. R. L. Frost and J. T. Kloprogge, J. Mol. Struct., 2000, 526, 131-141.
57. T. Ishioka, Y. Shibata, M. Takahashi, I. Kanesaka, Y. Kitagawa and K. T. Nakamura, Spectrochim. Acta A, 1998, 54, 1827-1836.
58. T. Ishioka, Y. Shibata, M. Takahashi and I. Kanesaka, Spectrochim. Acta A, 1998, 54, 1811-1818.
59. V. Koleva and D. Stoilova, J. Mol. Struct., 2002, 611, 1-8.
60. F. Decremps, J. Pellicer-Porres, A. M. Saitta, J. C. Chervin and A. Polian, Phys. Rev. B, 2002, 65, 92101(92101-92104).
61. A. Benninghoven, Angew. Chem. Int. Ed. Engl., 1994, 33, 1023.
62. B. A., Proceedings of the Thirteenth International Conference on Secondary Ion Mass Spectrometry and Related Topics, Nara-Ken New Public Hall, Nara, Japan, Nov. 11-16, 2001. Appl. Sur. Sci., 2003, 203, 1.
63. T. Paryjczak and M. I. Szynkowska, Przemysl Chem., 2003, 82, 199.
64. A. Murase, M. Ishii, S. Tokito and Y. Taga, Anal. Chem., 2001, 73, 2245.
65. Y. S. Lo, N. D. Huefner, W. S. Chan, P. Dryden, B. Hagenhoff and T. P. Beebe Jr., Langmuir, 1999, 15, 6522-6526.
66. J. Zhenguo, L. Kun, Y. Chengxing, F. Ruixin and Y. Zhizhen, J. Cryst. Growth, 2003, 253, 246-251.
67. A. V. Ghule, B. Lo, S. H. Tzing, K. Ghule, H. Chang and Y. C. Ling, Chem. Phys. Lett., 2003, 381, 262-270.
68. R. I. Bickley, H. G. M. Edwards, S. J. Rose and R. Gustar, J. Mol. Struct., 1990, 238, 13.
69. M. K. Johnson, D. B. Powell and R. D. Cannon, Spectrochim. Acta, 1981, 37A, 899.
70. M. Koyano, P. Quocbao, L. T. Thanhbinh, L. Hongha, N. Ngoclong and S. Katayama, Phys. Stat. Sol., 2002, 193, 125-131.
71. R. L. Frost, W. Martens, Z. Ding, J. T. Kloprogge and T. E. Johnson, Spectrochimi. Acta A, 2003, 59, 291.
72. M. S. Arnold, P. Avouris, Z. W. Pan and Z. L. Wang, J. Phys. Chem. B, 2003, 107, 659-663.
73. D. Briggs and H. S. Munro, Polym. Commun., 1987, 28, 307.
74. M. Lefevre, J. P. Dodelet and P. Bertrand, J. Phys. Chem. B, 2000, 104, 11238-11247.
75. W. Gerhard and C. Plog, Z. Phys. B, 1989, 54, 59.
76. J. C. Vickerman and A. J. Swift, Secondary ion mass spectrometry-the surface mass spectrometry, in: J.C. Vickerman (Ed.), Surface Analysis-The Principle Techniques, Wiley, Chichester, UK, 1997, 135., 1997.
77. L. Van Vaeck, A. Adriens and R. Gijbels, Mass Spectrom. Rev., 1999, 18, 1.
78. F. Aubriet, C. Poleunis and P. Bertrand, Appl. Sur. Sci., 2003, 203-204, 114-117.
79. F. Aubriet, C. Poleunis and P. Bertrand, J. Mass Spectrom., 2001, 36, 641.
80. G. Coullerez, J. Baborowski, C. Viornery, Y. Chevolot, N. Xanthopoulos, N. Ledermann, P. Muralt, N. Setter and H. J. Mathieu, Appl. Sur. Sci., 2003, 203-204, 527.
81. M. Riedel, H. Dusterhoft and J. P. Kuska, Rapid Commun. Mass Spectrom., 1997, 11, 667.
82. W. Szymczak and K. Wittmaack, Appl. Sur. Sci., 2003, 203-204, 170-174.
83. B. U. R. Sundqvist, R. in: Behrisch and K. E. Wittmaack, Sputtering by Particle Bombardment III, Springer, Berlin, 1991, p. 257., 1991.
84. J. Laskin and C. J. Lifshitz, J. Mass Spectrom., 2001, 36, 459.
85. I. S. Gilmore and M. P. Seah, Appl. Sur. Sci., 1999, 144-145, 26.
86. K. J. R. Rosman, Geochim. Cosmochim. Acta, 1972, 36, 801.
87. R. A. Nyquist and R. O. Kagel, Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts, Vol. 4, Academic Press, San Diego, 1997, p. 221., 1997.
88. Y. Inubushi, R. Takami, M. Iwasaki, H. Tada and S. Ito, J. Colloid Interface Sci., 1998, 200, 220-227.
Chapter 3
1. T. Arii and A. Kishi, Thermochim. Acta, 2003, 400, 175-185.
2. J. Zhenguo, L. Kun, Y. Chengxing, F. Ruixin and Y. Zhizhen, J. Cryst. Growth, 2003, 253, 246-251.
3. A. V. Ghule, B. Lo, S. H. Tzing, K. Ghule, H. Chang and Y. C. Ling, Chem. Phys. Lett., 2003, 381, 262-270.
4. R. I. Bickley, H. G. M. Edwards, S. J. Rose and R. Gustar, J. Mol. Struct., 1990, 238, 13.
5. M. K. Johnson, D. B. Powell and R. D. Cannon, Spectrochim. Acta, 1981, 37A, 899.
6. T. Ishioka, Y. Shibata, M. Takahashi, I. Kanesaka, Y. Kitagawa and K. T. Nakamura, Spectrochim. Acta A, 1998, 54, 1827-1836.
7. F. Decremps, J. Pellicer-Porres, A. M. Saitta, J. C. Chervin and A. Polian, Phys. Rev. B, 2002, 65, 92101(92101-92104).
8. T. Ishioka, Y. Shibata, M. Takahashi and I. Kanesaka, Spectrochim. Acta A, 1998, 54, 1811-1818.
9. V. Koleva and D. Stoilova, J. Mol. Struct., 2002, 611, 1-8.
10. M. Koyano, P. Quocbao, L. T. Thanhbinh, L. Hongha, N. Ngoclong and S. Katayama, Phys. Stat. Sol., 2002, 193, 125-131.
11. R. L. Frost, W. Martens, Z. Ding, J. T. Kloprogge and T. E. Johnson, Spectrochimi. Acta A, 2003, 59, 291.
12. M. S. Arnold, P. Avouris, Z. W. Pan and Z. L. Wang, J. Phys. Chem. B, 2003, 107, 659-663.
13. D. Briggs and H. S. Munro, Polym. Commun., 1987, 28, 307.
14. M. Lefevre, J. P. Dodelet and P. Bertrand, J. Phys. Chem. B, 2000, 104, 11238-11247.
15. W. Gerhard and C. Plog, Z. Phys. B, 1989, 54, 59.
16. J. C. Vickerman and A. J. Swift, Secondary ion mass spectrometry-the surface mass spectrometry, in: J.C. Vickerman (Ed.), Surface Analysis-The Principle Techniques, Wiley, Chichester, UK, 1997, 135., 1997.
17. L. Van Vaeck, A. Adriens and R. Gijbels, Mass Spectrom. Rev., 1999, 18, 1.
18. F. Aubriet, C. Poleunis and P. Bertrand, Appl. Sur. Sci., 2003, 203-204, 114-117.
19. F. Aubriet, C. Poleunis and P. Bertrand, J. Mass Spectrom., 2001, 36, 641.
20. A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, J. Phys. Chem. B, 2000, 104, 1715.
21. S. Sakohara, M. Ishida and M. A. Anderson, J. Phys. Chem. B, 1998, 102, 10169-10175.
22. M. Che, C. Naccache and B. Imelik, J. Catal., 1972, 24, 328.
23. K. V. Werde, D. Mondelaers, G. Vanhoyland, D. Nelis, M. K. Van Bael, J. Mullens, L. C. Van Poucke, B. Van der Veken and H. O. Desseyn, J. Mater. Sci., 2002, 37, 81-88.
24. M. S. Tokumoto, V. Briois, C. V. Santilli and S. H. Pulcinelli, J. Sol-Gel Sci. Technol., 2003, 26, 547-551.
25. G. Coullerez, J. Baborowski, C. Viornery, Y. Chevolot, N. Xanthopoulos, N. Ledermann, P. Muralt, N. Setter and H. J. Mathieu, Appl. Sur. Sci., 2003, 203-204, 527.
26. M. Riedel, H. Dusterhoft and J. P. Kuska, Rapid Commun. Mass Spectrom., 1997, 11, 667.
27. W. Szymczak and K. Wittmaack, Appl. Sur. Sci., 2003, 203-204, 170-174.
28. B. U. R. Sundqvist, R. in: Behrisch and K. E. Wittmaack, Sputtering by Particle Bombardment III, Springer, Berlin, 1991, p. 257., 1991.
29. J. Laskin and C. J. Lifshitz, J. Mass Spectrom., 2001, 36, 459.
30. I. S. Gilmore and M. P. Seah, Appl. Sur. Sci., 1999, 144-145, 26.
31. X. G. Zhang, J. Q. Pham, H. J. Martinez, P. J. Wolf, P. F. Green and K. P. Johnston, J. Vac. Sci. Tech. B, 2003, 21, 2590-2598.
32. K. J. R. Rosman, Geochim. Cosmochim. Acta, 1972, 36, 801.
33. D. Qian, J. Z. Jiang and P. L. Hansen, Chem. Commun., 2003, 1078-1079.
34. R. A. Nyquist and R. O. Kagel, Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts, Vol. 4, Academic Press, San Diego, 1997, p. 221., 1997.
35. Y. Inubushi, R. Takami, M. Iwasaki, H. Tada and S. Ito, J. Colloid Interface Sci., 1998, 200, 220-227.
36. L. Spanhel and M. A. Anderson, J. Am. Chem. Soc., 1991, 113, 2826-2833.
37. D. H. Bao, H. S. Gu and A. X. Kuang, Thin Solid Films, 1998, 312, 37-39.
38. C. Pacholski, A. Kornowski and H. Weller, Angew. Chem., Int. Ed., 2002, 41, 1188-1191.
39. L. Guo, Y. L. Ji, H. B. Xu, P. Simon and Z. Y. Wu, J. Am. Chem. Soc., 2002, 124, 14864-14865.
40. K. Govender, D. S. Boyle, P. O'Brien, D. Binks, D. West and D. Coleman, Adv. Mater., 2002, 14, 1221-1224.
41. L. Znaidi, G. Illia, S. Benyahia, C. Sanchez and A. V. Kanaev, Thin Solid Films, 2003, 428, 257-262.
42. B. Liu and H. C. Zeng, J. Am. Chem. Soc., 2003, 125, 4430-4431.
43. E. C. Scher, L. Manna and A. P. Alivisatos, Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2003, 361, 241-255.
44. F. F. Lange, Science, 1996, 273, 903-909.
45. C. C. Tang, S. S. Fan, M. L. de la Chapelle and P. Li, Chem. Phys. Lett., 2001, 333, 12-15.
46. Y. Dai, Y. Zhang, Q. K. Li and C. W. Nan, Chem. Phys. Lett., 2002, 358, 83-86.
47. S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh and C. J. Lee, Chem. Phys. Lett., 2002, 363, 134-138.
48. C. G. Kim, K. W. Sung, T. M. Chung, D. Y. Jung and Y. Kim, Chem. Commun., 2003, 2068-2069.
49. U. Bjorksten, J. Moser and M. Gratzel, Chem. Mater., 1994, 6, 858-863.
50. K. R. Brown, D. G. Walter and M. J. Natan, Chem. Mater., 2000, 12, 306-313.
51. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, J. Appl. Phys., 1996, 79, 7983-7990.
52. V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui and C. Surya, Appl. Phys. Lett., 2003, 83, 141-143.
53. S. J. Kwon and J. G. Park, J. Chem. Phys., 2005, 122.
54. E. M. Wong, P. G. Hoertz, C. J. Liang, B. M. Shi, G. J. Meyer and P. C. Searson, Langmuir, 2001, 17, 8362-8367.
55. J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee and S. T. Lee, Chem. Mater., 2002, 14, 1216-1219.
56. J. Erlebacher, P. C. Searson and K. Sieradzki, Phys. Rev. Lett., 1993, 71, 3311-3314.
Chapter 4
1. J. S. S. P. McHardy, Supercritical fluid cleaning fundamentals, technology and applications.
2. A. O'Neil and J. J. Watkins, Green Chemistry, 2004, 6, 363-368.
3. J. W. King and L. L. Williams, Curr. Opin. Solid. State. Mater. Sci., 2003, 7, 413-424.
4. G. L. Weibel and C. K. Ober, Microelectron. Eng., 2003, 65, 145-152.
5. S. Myneni and D. W. Hess, J. Electrochem. Soc., 2003, 150, G744-G750.
6. X. G. Zhang, J. Q. Pham, H. J. Martinez, P. J. Wolf, P. F. Green and K. P. Johnston, J. Vac. Sci. Tech. B, 2003, 21, 2590-2598.
7. G. Asai, Y. Muraoka, K. Saito, I. Mizobata, T. Iwata, K. Masuda, K. Iijima, T. Yoshikawa and D. Peters, in Ultra Clean Processing of Silicon Surfaces V, 2003, pp. 297-300.
8. G. Levitin, S. Myneni and D. W. Hess, J. Electrochem. Soc., 2004, 151, G380-G386.
9. Y. C. Ling, B. Lo, A. Ghule, K. Y. Hsu, W. Y. Chen, C. C. Tai, T. C. Kuo and P. J. Lien, in The 3nd International Symposium on Supercritical Fluid Technology for Energy and Environment Applications, Tianjin, China, 2004, p. 15.
10. C. S. Tan, in The 4th International Symposium on Supercritical Fluid Technologyfor Energy, Environment and Electronics Applications, Taipei, Taiwan, 2005.
11. M. A. Hartney, D. W. Hess and D. S. Soane, J. Vac. Sci. Tech. B, 1989, 7, 1-13.
12. H. Seo, S. B. Kim, J. Song, Y. Kim, H. Soh, Y. C. Kim and H. Jeon, J. Vac. Sci. Tech. B, 2002, 20, 1548-1555.
13. I. I. Kashkoush, R. Matthews and R. E. Novak, in 1997 IEEE International Symposium on Semiconductor Manufacturing Conference Proceedings, San Francisco, CA, USA, 1997, pp. 81-85.
14. S. De Gendt, P. Snee, I. Cornelissen, M. Lux, R. Vos, P. W. Mertens, D. M. Knotter, M. M. Meuris and M. Heyns, Solid State Phenomena, 1999, 65-6, 165-168.
15. G. Madras and S. Chattopadhyay, Chem. Eng. Sci., 2001, 56, 5085-5089.
16. Y. C. Kim and B. J. McCoy, Ind. Eng. Chem. Res., 2000, 39, 2811-2816.
17. E. J. Beckman, Environmental Science & Technology, 2003, 37, 5289-5296.
18. D. Li, B. X. Han and Z. M. Liu, Macromol. Chem. Phys., 2001, 202, 2187-2194.
19. G. Sivalingam and G. Madras, Chem. Eng. Sci., 2004, 59, 1577-1587.
20. S. Sato, T. Murakata, S. Baba, Y. Saito and S. Watanabe, J. Appl. Polym. Sci., 1990, 40, 2065-2071.
21. A. Reiser, J. Imaging Sci. Technol., 1998, 42, 15-22.
22. C. Y. Chen, A. V. Ghule, W. Y. Chen, C. C. Wang, Y. S. Chiang and Y. C. Ling, Appl. Surf. Sci., 2004, 231-2, 447-451.
23. E. M. Christenson, J. M. Anderson and A. Hiltner, Journal of Biomedical Materials Research Part A, 2004, 70A, 245-255.
24. Y. Enokida, O. Tomioka, S. C. Lee, A. Rustenholtz and C. M. Wai, Ind. Eng. Chem. Res., 2003, 42, 5037-5041.
25. W. Ryoo, S. E. Webber and K. P. Johnston, Ind. Eng. Chem. Res., 2003, 42, 6348-6358.
Chapter 5
1. Gopalan, A. S.; Wai, C. M.; Jacobs, H. K., Supercritical carbon dioxide : separation and processes. American Chemical Society: Washington, DC, 2003; p 479.
2. Ye, X. R.; Wai, C. M.; Zhang, D. Q.; Kranov, Y.; McIlroy, D. N.; Lin, Y. H.; Engelhard, M., Immersion deposition of metal films on silicon and germanium substrates in supercritical carbon dioxide. Chemistry Of Materials 2003, 15, (1), 83.
3. DeSimone, J. M. T. W., Green chemistry using liquid and supercritical carbon dioxide. 2003, Oxford University Press.
4. Laintz, K. E.; Sivils, L. D.; Spall, W. D., Solubility in supercritical fluid cleaning. In Supercritical fluid cleaning : fundamentals, technology, and applications, McHardy, J.; Sawan, S. P., Eds. Noyes Publications: 1998; p 290.
5. Wei, M.; Musie, G. T.; Busch, D. H.; Subramaniam, B., CO2-expanded solvents: Unique and versatile media for performing homogeneous catalytic oxidations. Journal of the American Chemical Society 2002, 124, (11), 2513-2517.
6. Musie, G.; Wei, M.; Subramaniam, B.; Busch, D. H., Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coordination Chemistry Reviews 2001, 219, 789-820.
7. Bird, G. A., Molecular Gas Dynamics. Clarendon Press: Oxford, 1976.
8. Brightwell, R.; Fisk, L. A.; Greenberg, D. S.; Hudson, T.; Levenhagen, M.; Maccabe, A. B.; Riesen, R., Massively parallel computing using commodity components. Parallel Computing 2000, 26, (2-3), 243-266.
9. Zhao, H. B.; Zheng, C. G.; Xu, M. H., Multi-Monte Carlo approach for general dynamic equation considering simultaneous particle coagulation and breakage. Powder Technology 2005, 154, (2-3), 164-178.
10. Nanbu, K., Direct Simulation Scheme Derived from the Boltzmann-Equation .1. Monocomponent Gases. Journal of the Physical Society of Japan 1980, 49, (5), 2042-2049.
11. Quayle, O. R., The Parachors of Organic Compounds. An Interpretation and Catalogue. Chemical Reviews 1953, 53, (3), 439-589.
12. Sun, Y. D.; Shekunov, B. Y., Surface tension of ethanol in supercritical CO2. Journal of Supercritical Fluids 2003, 27, (1), 73-83.
13. Kegel, W. K.; Overbeek, J. T. G.; Lekkerkerker, H. N. W., Thermodynamics of Microemulsions. In Handbook of microemulsion science and technology, Kumar, P.; Mittal, K. L., Eds. Marcel Dekker: New York, 1999; p 849.
14. Lo, B.; Tai, C. C.; Chang, J. Y.; Wu, C. H.; Chen, B. J.; Kuo, T. C.; Lian, P. J.; Ling, Y. C., Supercritical carbon dioxide-assisted oxidative degradation and removal of polymer residue after reactive ion etching of photoresist. Green Chemistry 2007, 9, (2), 133-138.
15. Monserrate, M.; Olesik, S. V., Evaluation of SFE-CO2 and methanol-CO2 mixtures for the extraction of polynuclear aromatic hydrocarbons from house dust. Journal of Chromatographic Science 1997, 35, (2), 82-90.
16. Langenfeld, J. J.; Hawthorne, S. B.; Miller, D. J.; Pawliszyn, J., Role of Modifiers for Analytical-Scale Supercritical-Fluid Extraction of Environmental-Samples. Analytical Chemistry 1994, 66, (6), 909-916.
17. Hawthorne, S. B.; Langenfeld, J. J.; Miller, D. J.; Burford, M. D., Comparison of Supercritical Chclf2, N2o, and Co2 for the Extraction of Polychlorinated-Biphenyls and Polycyclic Aromatic-Hydrocarbons. Analytical Chemistry 1992, 64, (14), 1614-1622.
18. Hawthorne, S. B.; Miller, D. J.; Nivens, D. E.; White, D. C., Supercritical Fluid Extraction of Polar Analytes Using Insitu Chemical Derivatization. Analytical Chemistry 1992, 64, (4), 405-412.
19. Deng, H. Q., Master Thesis: Analysis of organochlorine residues in Chinese herb, tea, and mussel by Supercritical fluid extraction. 1997, National Tsing Hua University, HsinChu, Taiwan.
20. Liu, J. C.; Ikushima, Y.; Shervani, Z., Investigation on the solubilization of organic dyes and micro-polarity in AOT water-in-CO2 microemulsions with fluorinated co-surfactant by using UV-Vis spectroscopy. Journal of Supercritical Fluids 2004, 32, (1-3), 97-103.
21. Hutton, B. H.; Perera, J. M.; Grieser, F.; Stevens, G. W., Investigation of AOT reverse microemulsions in supercritical carbon dioxide. Colloids and Surfaces a-Physicochemical and Engineering Aspects 1999, 146, (1-3), 227-241.