簡易檢索 / 詳目顯示

研究生: 徐銓華
論文名稱: 噴霧式蝕刻應用於單晶矽太陽能電池之研究
The Development of Spray Etching for surface texture on Single-Crystalline Silicon Based Solar Cell
指導教授: 陳福榮
口試委員: 林澤勝
孫文檠
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 76
中文關鍵詞: 噴霧式蝕刻單晶矽太陽能電池抗反射結構非等向性蝕刻背部表面電場
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在能源發展與環境保護的議題中,太陽能成為現今主流發展的綠色能源之一。為了降低成本及效率的提升,電池表面的抗反射微結構能使入射光反射率降低以達到增加光吸收效率的目的。日前由M. A. Green等人所提出的PERL太陽能電池模組效率達25%,而在此模組中只在入射光側有抗反射金字塔微結構。
    目前工業界對於單晶矽太陽能電池表面微結構製程為浸泡式鹼性濕蝕刻,此製程使矽晶圓雙面皆有金字塔微結構,在未來薄晶圓的發展中,存在著製程中晶圓抽離蝕刻溶液因應力造成的破片問題。相較於晶圓兩側皆含有金字塔的微結構,單面微結構更能使電池背部表面電場(Back Surface Field, BSF)在製程上厚度較為均勻且平整,可以避免背部表面電場過薄所導致電子穿隧效應而使電子電洞復合的現象。並在鈍化層薄膜的應用上,平整的表面不僅改善因粗糙結構所造成的膜厚不均勻問題,也改善了載子較容易在粗糙的金字塔微結構上復合的問題。
    本研究目的在於利用震盪器霧化蝕刻溶液,將霧滴沉降至晶圓表面進行單面蝕刻,此製程方法簡易且溶液成本較低,在加溫系統中一個小時內即可達到與傳統浸泡式製程相同的低反射率金字塔結構,並驗證了在不同粗糙度表面上的背部表面電場製程,厚度及均勻性的差異,突顯單面蝕刻的重要性。


    Development of renewable energy for environmental protection is the most critical issue in recent years, and solar energy is one of the key technologies for the possible solution. In order to reduce costs and improve efficiency of silicon based solar cells, surface texture is implemented to reduce the reflectivity of incident light to enhance the efficiency of light absorption. Recently, M. A. Green has demonstrated the efficiency as high as 25% in PERL solar cell module which has been textured only one side to be pyramid structure.
    The standard industrial process for the surface texture in single crystalline silicon based solar cell is alkaline immersion wet etching method. This process creates double-sided pyramid structure in silicon wafer which may give rise to a fragmentation problem caused by the stress due to immersion technique. As compared to the silicon wafer with two-sided pyramid structure, single-sided pyramid structure has advantage in the manufacturing process of the back surface field. Flat structure in BSF side could improve the uniformity in thickness of BSF layer and so that avoid electronic tunnel effect at the thinner BSF layer. Furthermore, the performance of passivation layer can also be benefited from the improvement in the flat structure and uniformity in BSF layer.
    In this thesis, we develop the spray etching method to texture single-sided pyramid structure in silicon wafer. This process is a simple and low cost method; it only takes one hour to fabricate the single-sided pyramid structure which has as low reflectivity as that from the traditional immersion process.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vi 圖目錄 vi 第一章 序論 1 1.1 前言 1 1.2 研究動機 8 第二章 基礎理論與文獻回顧 9 2.1 矽晶體結構 9 2.2 濕式蝕刻理論 10 2.2.1 濕式非等向性蝕刻 10 2.2.2 濕式等向性蝕刻 17 2.3 超音波霧化原理 20 第三章 實驗設計與分析儀器 22 3.1 實驗藥品 22 3.2 實驗設備 22 3.3 實驗流程 24 3.3.1 試片製備 25 3.3.2 蝕刻流程 25 3.4 分析儀器 26 3.4.1 掃描式電子顯微鏡 (Scanning Electron Microscope) 26 3.4.2 原子力顯微鏡 (Atomic Force Microscope) 27 3.4.3 光學顯微鏡 (Optical Microscope) 27 3.4.4 紫外光/可見光/近紅外光光譜儀 (UV/VIS/NIR Spectrometer) 27 第四章 實驗結果與討論 29 4.1 溫度對噴霧式蝕刻之影響 29 4.2 預蝕刻前處理之影響 40 4.2.1 預鹼蝕刻處理 40 4.2.2 預酸蝕刻處理 43 4.3 氫氧化鉀濃度討論 45 4.4 異丙醇濃度討論 51 4.5 氣流與霧量之討論 56 4.6 表面反射率之分析 57 4.7 金字塔結構對背部表面電場之影響 62 第五章 結論與未來展望 67 參考文獻 69

    [1] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (Version 38)," Progress in Photovoltaics, vol. 19, pp. 565-572, Aug 2011.
    [2] J. H. Zhao, A. H. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, "24% efficient PERL silicon solar cell: Recent improvements in high efficiency silicon cell research," Solar Energy Materials and Solar Cells, vol. 41-2, pp. 87-99, Jun 1996.
    [3] M. A. Green, "The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell Evolution," Progress in Photovoltaics, vol. 17, pp. 183-189, May 2009.
    [4] P. Campbell and M. A. Green, "LIGHT TRAPPING PROPERTIES OF PYRAMIDALLY TEXTURED SURFACES," Journal of Applied Physics, vol. 62, pp. 243-249, Jul 1987.
    [5] P. Campbell and M. A. Green, "High performance light trapping textures for monocrystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 65, pp. 369-375, Jan 2001.
    [6] D. Munoz, P. Carreras, J. Escarre, D. Ibarz, S. M. de Nicolas, C. Voz, J. M. Asensi, and J. Bertomeu, "Optimization of KOH etching process to obtain textured substrates suitable for heterojunction solar cells fabricated by HWCVD," Thin Solid Films, vol. 517, pp. 3578-3580, Apr 2009.
    [7] P. K. Singh, R. Kumar, M. Lal, S. N. Singh, and B. K. Das, "Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions," Solar Energy Materials and Solar Cells, vol. 70, pp. 103-113, Dec 2001.
    [8] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik, and J. Nijs, "Improved anisotropic etching process for industrial texturing of silicon solar cells," Solar Energy Materials and Solar Cells, vol. 57, pp. 179-188, Feb 1999.
    [9] L. M. Landsberger, S. Naseh, M. Kahrizi, and M. Paranjape, "On hillocks generated during anisotropic etching of Si in TMAH," Journal of Microelectromechanical Systems, vol. 5, pp. 106-116, Jun 1996.
    [10] D. Iencinella, E. Centurioni, R. Rizzoli, and F. Zignani, "An optimized texturing process for silicon solar cell substrates using TMAH," Solar Energy Materials and Solar Cells, vol. 87, pp. 725-732, May 2005.
    [11] P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, "Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching," Solar Energy Materials and Solar Cells, vol. 90, pp. 2319-2328, Sep 2006.
    [12] J. John, V. Prajapati, C. Allebe, A. U. de Castro, J. L. Hernandez, B. Vermang, A. Rothschild, A. Lorenz, B. T. Chan, K. Baert, J. Poortmans, and Ieee, "A Process Technology Toolbox for next Generation Large Area Crystalline Silicon Solar Cells," in 35th Ieee Photovoltaic Specialists Conference, ed, 2010.
    [13] F.S.Grasso, L.Gautero, and J. R. R. Preu, "Characterization of local Al-BSF formation for PERC solar cell structures," European PV solar energy conference and exhibition, pp. 6-10, 2010.
    [14] H. C. Fang, C. C. Chang, C. P. Liu, H. S. Chung, and C. L. Huang, "Effects of Back Surface Textures on Contact Formation and Solar Cell Performance," Journal of the Electrochemical Society, vol. 157, pp. H246-H249, 2010.
    [15] V. Meemongkolkiat, M. Hilali, and A. Rohatgi, Investigation of RTP and belt fired screen printed Al-BSF on textured and planar back surfaces of silicon solar cells, 2003.
    [16] O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, "Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices," Semiconductor Science and Technology, vol. 15, pp. R29-R40, Jul 2000.
    [17] J. Schmidt, M. Kerr, and A. Cuevas, "Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks," Semiconductor Science and Technology, vol. 16, pp. 164-170, Mar 2001.
    [18] B. Hoex, J. J. H. Gielis, M. de Sanden, and W. M. M. Kessels, "On the c-Si surface passivation mechanism by the negative-charge-dielectric Al(2)O(3)," Journal of Applied Physics, vol. 104, Dec 2008.
    [19] H. Jin, K. J. Weber, N. C. Dang, and W. E. Jellett, "Defect generation at the Si-SiO2 interface following corona charging," Applied Physics Letters, vol. 90, Jun 2007.
    [20] K. R. McIntosh and L. P. Johnson, "Recombination at textured silicon surfaces passivated with silicon dioxide," Journal of Applied Physics, vol. 105, Jun 2009.
    [21] C. Gong, E. Simoen, L. Zhao, N. E. Posthuma, E. Van Kerschaver, J. Poortmans, R. Mertens, and Ieee, "STUDY OF SILICON-SILICON NITRIDE INTERFACE PROPERTIES ON FLAT AND TEXTURED SURFACES BY DEEP LEVEL TRANSIENT SPECTROSCOPY," in 35th Ieee Photovoltaic Specialists Conference, ed, 2010.
    [22] N. Consulting, 2011.
    [23] PVNET European Roadmap for PV R&D,ITRI/IEK, 2009.
    [24] S. Mack, U. Jager, G. Kastner, E. A. Wotke, U. Belledin, A. Wolf, R. Preu, D. Biro, and Ieee, "TOWARDS 19% EFFICIENT INDUSTRIAL PERC DEVICES USING SIMULTANEOUS FRONT EMITTER AND REAR SURFACE PASSIVATION BY THERMAL OXIDATION," in 35th Ieee Photovoltaic Specialists Conference, ed, 2010.
    [25] S. M. Sze and K. K. Ng, "Physics of semiconductor devices," 2007.
    [26] D. Neamen, An Introduction to Semiconductor Devices: McGraw-Hill, 2006.
    [27] P. J. Holmes, The Electrochemistry of Semiconductors. London: Academic Press, 1962.
    [28] W. Kern, "CHEMICAL ETCHING OF SILICON, GERMANIUM, GALLIUM-ARSENIDE, AND GALLIUM-PHOSPHIDE," Rca Review, vol. 39, pp. 278-308, 1978.
    [29] P. Allongue, V. Costakieling, and H. Gerischer, "ETCHING OF SILICON IN NAOH SOLUTIONS .2. ELECTROCHEMICAL STUDIES OF N-SI(111) AND N-SI(100) AND MECHANISM OF THE DISSOLUTION," Journal of the Electrochemical Society, vol. 140, pp. 1018-1026, Apr 1993.
    [30] J. B. Price, Semiconductor Silicon. Princeton, NJ, 1973.
    [31] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "ANISOTROPIC ETCHING OF CRYSTALLINE SILICON IN ALKALINE-SOLUTIONS .1. ORIENTATION DEPENDENCE AND BEHAVIOR OF PASSIVATION LAYERS," Journal of the Electrochemical Society, vol. 137, pp. 3612-3626, Nov 1990.
    [32] M. Elwenspoek, "ON THE MECHANISM OF ANISOTROPIC ETCHING OF SILICON," Journal of the Electrochemical Society, vol. 140, pp. 2075-2080, Jul 1993.
    [33] P. J. Hesketh, C. Ju, S. Gowda, E. Zanoria, and S. Danyluk, "SURFACE FREE-ENERGY MODEL OF SILICON ANISOTROPIC ETCHING," Journal of the Electrochemical Society, vol. 140, pp. 1080-1085, Apr 1993.
    [34] E. D. Palik, O. J. Glembocki, I. Heard, P. S. Burno, and L. Tenerz, "ETCHING ROUGHNESS FOR (100) SILICON SURFACES IN AQUEOUS KOH," Journal of Applied Physics, vol. 70, pp. 3291-3300, Sep 1991.
    [35] S. A. Campbell, K. Cooper, L. Dixon, R. Earwaker, S. N. Port, and D. J. Schiffrin, "INHIBITION OF PYRAMID FORMATION IN THE ETCHING OF SI P 100 IN AQUEOUS POTASSIUM HYDROXIDE-ISOPROPANOL," Journal of Micromechanics and Microengineering, vol. 5, pp. 209-218, Sep 1995.
    [36] H. Robbins and B. Schwartz, "CHEMICAL ETCHING OF SILICON .1. THE SYSTEM HF,HNO3, AND H2O," Journal of the Electrochemical Society, vol. 106, pp. 505-508, 1959.
    [37] H. Robbins and B. Schwartz, "CHEMICAL ETCHING OF SILICON .2. THE SYSTEM HF, HNO3, H2O, AND HC2H3O2," Journal of the Electrochemical Society, vol. 107, pp. 108-111, 1960.
    [38] Y. Nishimoto, T. Ishihara, and K. Namba, "Investigation of acidic texturization for multicrystalline silicon solar cells," Journal of the Electrochemical Society, vol. 146, pp. 457-461, Feb 1999.
    [39] P. Panek, M. Lipinski, and J. Dutkiewicz, "Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells," Journal of Materials Science, vol. 40, pp. 1459-1463, Mar 2005.
    [40] B. Gonzalez-Diaz, R. Guerrero-Lemus, B. Diaz-Herrera, N. Marrero, J. Mendez-Ramos, and D. Borchert, "Optimization of roughness, reflectance and photoluminescence for acid textured mc-Si solar cells etched at different HF/HNO(3) concentrations," Materials Science and Engineering B-Advanced Functional Solid-State Materials, vol. 159-60, pp. 295-298, Mar 2009.
    [41] J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, "19.8% efficient "honeycomb'' textured multicrystalline and 24.4% monocrystalline silicon solar cells," Applied Physics Letters, vol. 73, pp. 1991-1993, Oct 1998.
    [42] X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Applied Physics Letters, vol. 77, pp. 2572-2574, Oct 2000.
    [43] S. Koynov, M. S. Brandt, and M. Stutzmann, "Black multi-crystalline silicon solar cells," Physica Status Solidi-Rapid Research Letters, vol. 1, pp. R53-R55, Mar 2007.
    [44] K. Nishioka, S. Horita, K. Ohdaira, and H. Matsumura, "Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle," Solar Energy Materials and Solar Cells, vol. 92, pp. 919-922, Aug 2008.
    [45] S. Bastide, N. Le Quang, R. Monna, and C. Levy-Clement, "Chemical etching of Si by Ag nanocatalysts in HF-H(2)O(2): application to multicrystalline Si solar cell texturisation," in Physica Status Solidi C - Current Topics in Solid State Physics, Vol 6, No 7. vol. 6, A. Nassiopoulou, M. Sailor, L. Canham, and P. Schmuki, Eds., ed, 2009, pp. 1536-1540.
    [46] Y. T. Cheng, J. J. Ho, S. Y. Tsai, Z. Z. Ye, W. Lee, D. S. Hwang, S. H. Chang, C. C. Chang, and K. L. Wang, "Efficiency improved by acid texturization for multi-crystalline silicon solar cells," Solar Energy, vol. 85, pp. 87-94, Jan 2011.
    [47] Y. T. Cheng, J. J. Ho, W. Lee, S. Y. Tsai, Y. A. Lu, J. J. Liou, S. H. Chang, and K. L. Wang, "Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells," International Journal of Photoenergy, 2010.
    [48] A. Nakaruk and C. C. Sorrell, "Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titania thin films," Journal of Coatings Technology and Research, vol. 7, pp. 665-676, Sep 2010.
    [49] H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, and D. Kim, "Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution," Solar Energy Materials and Solar Cells, vol. 93, pp. 1773-1778, Oct 2009.
    [50] I. Zubel and M. Kramkowska, "The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions," Sensors and Actuators a-Physical, vol. 93, pp. 138-147, Sep 2001.
    [51] W. Haiss, P. Raisch, L. Bitsch, R. J. Nichols, X. H. Xia, J. J. Kelly, and D. J. Schiffrin, "Surface termination and hydrogen bubble surfaces during anisotropic dissolution adhesion on Si(100) in aqueous KOH," Journal of Electroanalytical Chemistry, vol. 597, pp. 1-12, Nov 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE