研究生: |
廖權能 Chyuan-neng Liao |
---|---|
論文名稱: |
長鏈烷烴的加氫異構化 Hydroisomerization of Long Chain n-Paraffin |
指導教授: |
趙桂蓉
Kuei-jung Chao |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 280 |
中文關鍵詞: | 正烷烴 、長鏈烷烴 、加氫異構化 、異構化 |
外文關鍵詞: | n-paraffin, n-alkane, long chain, hydroisomerization, isomerization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在探討長鏈烷烴加氫異構化之觸媒化學﹐研究含Pt金屬之多種酸性觸媒的孔洞大小與結構、酸性、Si/Al值以及加入第二種陽離子等如何影響反應活性和選擇性。本文共分6章﹐針對長鏈烷烴加氫異構化反應做系統性探討︰第一章說明烷烴加氫異構化研究之背景(驅動力)與其重要性﹐接著對分子篩沸石作一簡介﹐並列舉出幾種沸石的孔洞結構特徵(第四、五章與附錄討論到的)﹔第二章收集專利與期刊文獻﹐對烷烴加氫異構化研究之現況﹐作一整理與回顧﹔第三章至第五章分別以n-C16H34異構化為反應模式做系列性的研究﹐其中第四、第五兩章是本論文的重點︰第三章探討含白金非結晶型矽鋁氧化物觸媒之幾個製備參數﹐對長鏈烷烴加氫異構化反應的影響﹔第四章探討白金/沸石觸媒之孔洞結構差異、酸基數量、以及酸基強度對長鏈烷烴加氫異構化反應性能的影響﹔第五章為修飾Ferrierite 沸石擔體對烷烴加氫異構化反應影響的探討﹔第六章則以n-C16H34加氫異構化反應測試結果﹐性能較好的3支觸媒﹐作為蠟油異構化反應的觸媒﹐進一步比較它們在實際油料應用之性能﹔最後為總結。 附錄部分為『中德合作研究計劃』之- “SO2氧化觸媒開發”之研究結果。
觸媒之孔洞大小與結構﹐影響n-C16H34加氫異構化反應之產物分佈非常大。對於12圓環沸石與非結晶型矽鋁氧化物等大孔洞觸媒﹐得到最大異構化產率的轉化率大都在80wt%左右﹐且產物趨向生成多支鏈異構物以及從碳鏈中間斷裂的裂解產物。10圓環沸石等較小孔洞觸媒﹐得到最大異構化產率的轉化率都在90wt%以上﹐且趨向生成單支鏈異構物與碳鏈末端斷裂的裂解產物。因此從多支鏈對單支鏈異構物的含量比值(PSBR)可分辨12圓環以上之沸石與10圓環沸石兩類。 而中間單支鏈異構物對末端單支鏈異構物含量之比值(CTBR)﹐可用來區分10圓環沸石之孔洞大小。用於n-C16H34加氫異構化反應之沸石觸媒﹐其Si/Al值似乎存在一最佳值﹐Si/Al值太低時﹐酸基數量過多﹐對長鏈烷烴之加氫異構化選擇率不利; Si/Al值太高時﹐酸量太低﹐則活性不足﹐需提高反應溫度﹐熱力學上不利。 就1.0 wt% Pt的BEA沸石而言﹐其最佳的Si/Al2值似乎在150左右﹐而1.0 wt% Pt的USY沸石﹐其最佳的Si/Al2值可能還需要更高。
磷化合物修飾矽鋁沸石觸媒﹐雖可降低酸量或減低酸強度﹐但實驗結果對長鏈烷烴之異構化反應並不理想﹐可能原因包括(1)堵住孔洞、發生(2)去鋁作用﹐或(3)與布朗式酸基作用使得活性消失。
Na+、K+ 等鹼金屬離子的存在會毒化酸基﹐降低反應活性﹐對異構化反應不利﹐鹼金屬離子含量越高﹐其活性越差。但加入少量二價鈣離子至含白金觸媒﹐可提高 Pt之分散度﹐進而提高異構化產率。
FER沸石具有特殊的2- D孔洞結構﹐所以長鏈烷烴之裂解產物分布與其他沸石差異甚大﹐主要集中在 C1-C6等一些較小的分子。以離子交換法引進2價或3價的金屬離子至FER沸石﹐可顯著改善Pt/FER觸媒之反應性能:增加異構化反應之選擇率﹐同時改變裂解產物的分布﹐其原因是多重的:1.Mn+ 降低FER沸石之酸基強度﹐減少裂解反應的發生﹐
2.Mn+提高Pt之分散度﹐使得加氫飽和與酸基異構化雙功能更趨近平衡﹔
3.Mn+佔據在 6mR⊥8mR 交會的孔洞上﹐阻止初級裂解產物進入8mR孔洞中﹐故減低裂解產物中C1-C3等較小的分子的比例﹐同時增加C7-C13初級裂解產物的相對量﹐因此裂解產物的分布成顯著不同。
固態離子交換法可有效地將Pt2+ 引入至FER沸石之孔洞內﹐部份的Pt2+ 會喜歡佔據在 6mR⊥8mR 交會的孔洞上﹐可能會阻止初級裂解產物進入8mR孔洞中﹐使得FER原本類似2D的孔洞結構﹐變成類似1D的孔洞結構﹐故異構化產率﹐與裂解產物的分布形態均與Pt/M,H-FER觸媒相似。
蠟油異構化反應得到之潤滑基礎油產物﹐其潤滑油特性與觸媒特性有關﹐與反應條件也有密切關係。經篩選的三支觸媒對於粗蠟加氫異構化反應的活性順序與n-C16H34異構化之測試結果一致﹐Pt/HBEA 活性最好﹐反應溫度最低﹐產物中飽和烴含量都在95wt%以上﹐產物色澤最好﹔SAPO-11因酸性較弱﹐達到相同轉化程度所需的反應溫度較高﹐故產物中芳香烴含量較高﹐色澤最深﹔Pt_Ca/HFer都介於中間。 整體而言﹐3支經篩選出的觸媒各有其特色﹐各有其長處。
The purport of this thesis is to investigate the catalytic chemistry of the hydroisomerization of long chain n-paraffin. It mainly focus on how the parameters, such as the pore size/structure, acidity, Si/Al ratio and adding a 2nd polyvalent metal ion into some Pt loaded acid catalysts, affect the reaction activities and the selectivities.
Six chapters are included in this systematic study. Chapter 1 describes the driving forces and the importance, makes a short introduction to zeolite and then lists some of its characteristic pore structure discussed in this thesis. Chapter 2, a review survey, describes the state of the art of paraffin’s hydroisomerization. Model compound, n-hexadecane, was used to investigate the chemistry of hydroisomerization in chapter 3, chapter 4 and chapter 5. Chapter 3 focuses on the effect of some preparation parameters of amorphous silica-alumina catalysts. Chapter 4 and chapter 5 are the major part of this thesis. Chapter 4 investigates the pore effects, the effects of acid strength and acid amounts by various modifications. Chapter 5 focuses on the modification effect on the Pt loaded Ferrierite zeolite. Chapter 6 focuses on real feed testing with three selected catalysts which show high hydroisomerization performance on model compound testing. A cooperate research report, the development of catalysts for SO2 oxidation, conducted by Germany DAAD and Taiwan NSC is included also in appendix.
The pore structure/size of zeolite plays an important role on the product distribution of the hydroisomerization of n-hexadecane. The conversion at maximum isomerization yield of 12mR zeolite and amorphous silica-alumina catalysts are around 80 wt% and poly-branched iso-hexadecane and central cracking fragments are preferable in these large pore catalysts. For 10mR zeolite, the conversion at maximum isomerization yield are all above 90 wt%, and single-branched iso-hexadecane and terminal cracking fragments are preferable in 10mR zeolite. The ratio of poly-branched to single-branched iso-hexadecane (PSBR) can be used to differentiate 12mR and 10mR zeolite. The ratio of central-branched to terminal-branched iso-hexadecane (CTBR) is well correlated to the pore size. There seems to exist an optimum Si/Al ratio for each catalyst in the hydroisomerization of n-hexadecane. If the acid amounts of the catalyst is too low, higher temperature is required for the reaction to achieve the same conversion, and it is unfavorable for the thermodynamic equilibrium. Contrarily, if the acid amounts is too high, side reactions may play an important role, and it is also unfavorable to the hydroisomerization reaction. In case of zeolite with 1.0 wt% Pt loaded, the optimum Si/Al ratio for H-BEA is around 150, and that for H-USY maybe a little higher.
Although zeolite treated with phosphorous compounds does reduce the acid strength and/or the acid amounts, it is helpless and even harmful to paraffin’s hydroisomerization. It may block the pore, poison the Bronsted acid sites or promote the dealumination reaction.
The existence of alkaline metal ion, i.e. Na+ or K+, is harmful to paraffin’s hydroisomerization. It mainly poisons the Bronsted acid sites and reduces the activity. However, the addition of small amounts of alkaline earth metal ion can improve the maximum isomerization yield due to the better Pt dispersion.
The cracking products of long-chain n-paraffin over Pt/H-FER are mainly distributed on C1-C6 , which are significantly different from that of other zeolites, as a result of the special 2-D pore structure of FER zeolite. Adding a second divalent or trivalent metal ion (Mn+, n=2,3) into FER zeolite by ion exchange can significantly improve the performance of paraffin’s hydroisomerization, including increasing the maximum isomerization yield and changing the pattern of cracking products. The reasons for this improvement are multiple:
1. Mn+ reduces the acid strength and/or the acid amounts of FER.
2. Mn+ improves the Pt dispersion
3. Mn+ prefers to locate at special position, such as the intersection of 6mR and 8mR channel, which reduces the possibility for small molecules to diffuse into 8mR channel, hinders the further cracking reaction and changes the cracking pattern.
Solid state ion exchange can introduce Pt2+ ion into small pore of FER. In this case, some of the Pt 2+ ion also prefers to locate at the special position to hinder lots of small molecules diffusion into 8mR channel and thus prevents small molecules from being further cracked. The product pattern of n-paraffin’s hydroisomerization over Pt/H-FER, which is prepared by solid-state ion exchange, is very similar to that of Pt/M,H-FER.
The properties of lubricant base oil are highly correlated with the characteristics of the catalyst and the process’s parameters. Three catalysts with best hydroisomerization performance on model compound testing were selected to evaluate their performance in real feed. The order of 3 catalysts’ reactivity in wax hydroisomerization is the same as that in model compound testing. Pt/H-BEA shows the highest activity, and the products contain more than 90wt% of saturates with a very dim color. Pt/H-SAPO11 requires the highest reaction temperature to achieve the same conversion due to its low acidity strength. Its products are dark and contain lots of aromatics. Pt/Ca_FER is just in between. Generally speaking, these 3 catalysts are comparable, they have their advantages and their weaknesses for each one.
1 H.J.Jiang, M.S.Tzou, and W.M.H.Sachtler, Appl. Catal., 39, 255 (1988)
2 L.Forni and E.Magni, J.Catal., 112, 437 (1988).
3 L.Forni, E.Magni, E.Ortoleva, R.Monaci and V.Solinas, J.Catal., 112, 444 (1988).
4 A.Auroux, Y.S.Jin, J.C.Vedrine and L.Benoist, Appl. Catal., 36, 323 (1988).
5 A.Corma, W.Fornes, W.Kolodziejski and L.J.Martinez-Triguero, J.Catal., 145, 27 (1994)
6 A.Dyer and A.P.Singh, Zeolites, 8, 242 (1988).
7 A.F.H.Wielers, W.Vaarkamp and M.F.M.Post, J. Catal., 127, 51 (1991)
8 A.Iino, R.Iwamoto and I.Nakamura, Catal. Sci. & Tech. 1, 351 (1991)
9 A.Rahman, G.Lemay, A.Adnot and S.Kaliaguine, J. Catal., 112, 453 (1988).
10 C.Fernandez, J.Grosmangin, G.Szabo, and J.C.Vedrine, Appl. Catal. , 27(2), 335 (1986)
11 C.Henriques, P.Duresne, C.Marcilly and F.R.Ribeiro, Appl. Catal., 21, 169 (1986)
12 C.J.Planck, Proc. Int. Congr. Catal., 3rd, 1964, 1, 727 (1965)
13 C.Mirodatos and D.Barthomeuf, J. Catal., 114, 121 (1988)
14 C.Mirodatos and D.Barthomeuf, J. Catal., 93, 246 (1985)
15 C.V.Hidalgo, H.Itoh, T.Hattori, M.Niwa and Y.Murakami, J. Catal., 85, 362 (1984)
16 D.Barthomeuf, Appl. Catal. A: 126, 187 (1995)
17 D.Kaucky, J.Dedecek, A.Vondrova, Z.Sobalik and B.Wichterlova, Collect. Czech. Chem. Commun., 63, 1781 (1998)
18 F.Eder and J. A.Lercher, J. Phys. Chem. B, 101(8), 1273 (1997)
19 F.Jousse, L.Leherte and D.P.Vercauteren, Mol. Simul. 17, 175 (1996).
20 H.L.Coonradt and W.E. Garwood, Ind. Eng. Chem. Proc. Des. Dev., 3(1), 38 (1964)
21 H.Sato, N.Ishii, K.Hirose and S.Nakamura, Proc. 7th Int. Zeolite Conf., 1986,Tokyo (Y.Murakami et al., eds) Kodensha, Tokyo and Amsterdam, 755 (1986).
22 H.Vinek, G.Rumplmayr and J.A.Lercher, J. Catal., 115, 291 (1989)
23 I.J.Pickering, P.J.Maddox, J.M.Thomas and A.K.Cheetham, J. Catal., 119, 261 (1989)
24 I.Nakamura, R.Iwamoto and A.Iino, Stud. Surf. Sci. Catal., 77, 77 (1995).
25 I.Wang, T.J.Chen, K.J.Chao, and T.C.Tsai, J. Catal., 60, 140 (1979).
26 J.A.Cary and J.T.Cobb,Jr., J. Catal., 36, 125 (1975).
27 J.A.Lercher and G.Rumplmayr, Appl. Catal., 25, 215 (1986)
28 J.A.Martens and P.A.Jacobs, Zeolites, 6, 334 (1986).
29 J.A.Martens, J.Weitkamp, and P.A.Jacobs, Stud. Surf. Sci. Catal., 36, 427 (1985)
30 J.A.Martens, M.Tielen, P.A.Jacobs and J.Weitkamp, Zeolites, 4, 98 (1984).
31 J.A.Martens, W.Souverijns, W.Verrelst, R.Parton, G.F. Groment and P.A.Jacobs, Angew. Chem., 34(22), 2528 (1995).
32 J.C.Vedrine, A.Auroux, P.Dejaifve, V.Ducarme, H.Hoser and S.Zhou, J. Catal., 73, 147 (1982)
33 J.Caro, M.Bulow, M.Derewinski, J.Haber, M.Hunger, J.Karger, H.Pfeifer, W.Storek and B.Zibrowius, J. Catal., 124, 367 (1990)
34 J.Dewing, J. Mol. Catal., 27, 25 (1984).
35 J.G.Fripiat, P.Galet, J.Delhalle, J.M.Andre, J.B.Nagy, and E.G.Derouane, J. Phys. Chem., 89, 1932 (1985).
36 J.M.Lopes, F.Lemos, E.Derouane and F.R.Ribeiro, React. Kinet. Catal. Lett. 58(1), 33 (1996).
37 J.N.Armor Microporous Mesoporous Mater., 22, 451 (1998)
38 J.N.Armor, Catal. Today, 26(2), 147 (1995)
39 J.P.Giannetti, and A.J.Perrotta, Ind. Eng. Chem. Process Des. Develop., 14(1), 86 (1975)
40 J.Weitkamp, P.A.Jacobs and J.A.Martens, Appl. Catal., 8, 123 (1983)
41 J.Weitkamp, M.Breuninger, H.G.Karge and M.Hunger, Proc. Int. Zeolite Conf., Volume 4, 2697-2704. ( Edited by: M.M.J.Treacy, Materials Research Society: Warrendale, Pa., 1999).
42 J.Weitkamp, M.Breuninger, H.G.Karge and M.Hunger, J. Phys. Chem. B, 101(27), 5414 (1997).
43 J.Weitkamp, S.Ernst, T.Bock, A.Kiss and P.Kloinschmit, Stud. Surf. Sci. Catal., 94, 278 (1995).
44 K.H.Chandawa, S.B.Kulkarni and P.Ratnasamy, , Appl. Catal., 4, 287 (1982)
45 K.Tanabe, M.Misono, Y.Ono and H.Hattori, Stud. Surf. Sci. Catal., 51, 293 (1989)
46 L.D.Rollmann, J.Catal., 47, 113(1977).
47 L.Leglise, J.M.Goupil and D.Cornet, Appl. Catal., 69, 33 (1991).
48 M.A.Chaar and J.B.Butt, Appl. Catal., 114, 287 (1994)
49 M.Derewinski, J.Haber, J.Ptaszynski, V.P.Shiralkar and S.Dzwigaj, Stud. Surf. Sci. Catal., 18, 209 (1984)
50 M.Guisnet, F.Alvarez, G.Giannetto and G.Perot, Catal. Today, 1, 415 (1987).
51 M.Kato, H.Araki, and K.Itabashi, Stud. Surf. Sci. Catal., 98, 260 (1995)
52 M.M.Olken and J.M.Graces, "Proc. 9th Int. Zeolites Conf., Montreal", Butterworth-Heinemann, 559-566 (1992).
53 M.P.Attfield, S.J.Weigel and A.K.Cheetham, J. Catal., 172(2), 274 (1997)
54 M.S.Tzou, H.J.Jiang and W.M.H.Sachtler, Appl. Catal., 20, 231 (1986)
55 P.A.Jacobs and J.A.Martens, "Proc. 7th Int. Conf. Zeolites, Tokyo", Kodanska-Elsevier, 23 (1986).
56 P.A.Jacobs, J.B.Uytterhoeven, H.Steijns, G.Froment and J.Weitkamp; Proc. Int. 5th Conf. On Zeolites(L.E.Rees Ed.), 607-615, (Heyden, London, Philadelphia, Rheine,1980)
57 P.A.Jacobs, M.Tielen,J.A.Martens and H.K.Beyer, J. Mol. Catal., 27, 11 (1984).
58 P.K.Ahn, S.Nishiyama, S.Tsuruya and M.Masai, Appl. Catal. 101, 207 (1993)
59 P.O.Fritz and J.H.Lunsford, J. Catal., 118(1), 85 (1989).
60 P.O.Fritz and J.H.Lunsford, J. Catal., 85, 118 (1989)
61 P.Ratanasamy and R.Kuma, Catal. Today, 9(4), 329 (1991).
62 P.Sarv, B.Wichterlova and J.Cejka, J. Phys. Chem. B, 102(8), 1372 (1998)
63 R.A.Beyerlein, G.B.McVicker, L.N.Yacullo and J.J.Ziemiak, Preprints, Div. Petrol. Chem., ACS, 191 (1986).
64 R.B.Borade, A.Adnot and S.Kaliaguine, Zeolites, 12, 76 (1992).
65 R.E.Morris, S.J.Weigel, J.N.Henson, L.M.Bull, M.T.Janicke, B.F.Chmelka, and A.K.Cheetham, J. Am. Chem. Soc., 116, 11849 (1994).
66 R.Szostak, V.Nair and T.L.Thomas, J. Chem. Soc. Faraday Trans. 1, 83, 487 (1987)
67 S.H.Baeck, and W.Y.Lee, Appl. Catal., 164, 291 (1997)
68 S.J.Collins and P.J. O'Malley, J. Catal., 153, 94 (1995)
69 S.J.Miller, Microporous Mater., 2, 439 (1994)
70 S.L.Soled, G.McVicker, S.Miseo, W.Gates and J.Baumgartner, Stud, Surf. Sci . Catal., 101, 563 (1996).
71 S.P.Bates, W.J.M.Vanwell, R.A.Vansanten and B.Smit, J. Am. Chem. Soc., 118(28), 6753 (1996).
72 S.P.Bates, W.J.M.Vanwell, R.A.Vansanten and B.Smit, J. Phys. Chem., 100(44), 17573 (1996)
73 S.P.Bates, W.J.M.Vanwell, R.A.Vansanten and B.Smit, Mol. Simul., 19(5-6), 301 (1997)
74 T.Takaishi, M.Kato, and K.Itabashi, Zeolites, 15, 21 (1995).
75 V.J.Frilette, W.O.Haag, and R.M.Lago, J. Catal., 67, 218 (1981)
76 V.L.Zholobenko, D.B.Lukyanov, J.Dwyer and W.J.Smith, J. Phys. Chem. B, 102(15), 2715 (1998)
77 W.J.M.Vanwell, X.Cottin, B.Smit, J.H.C.Vanhooff and R.A.Vansanten, J. Phys. Chem. B, 102(20), 3952 (1998)
78 W.J.M.Vanwell, X.Cottin, ; J.W.Dehaan, R.A.Vansanten and B.Smit, Angew. Chem., 37(8), 1081 (1998)
79 W.J.M.Vanwell, X.Cottin, J.W.Dehaan, B.Smit, G.Nivarthy, J.A.Lercher, J.H.C.Vanhooff and R.A.Vansanten, J. Phys. Chem. B, 102(20), 3945 (1998)
80 W.Souverijns, J.A.Martens, G.F.Froment and P.A.Jacobs, J. Catal.,174(2), 177 (1998)
81 Y.J.Li, and J.N. Armor, Appl. Catal., B, 3(1), L1 (1993)
82 Y.V.Kissin and G.P.Feulmer, J.Chromatogr. Sci. 24, 53 (1986).
83 Z.Sobalik, J.Dedecek, I.Ikonnikov and B.Wichterlova, Microporous Mesoporous Mater., 21(4-6), 525 (1998)
84 Z.Sobalik, Z.Tvaruzkova and B.Wichterlova, J. Phys. Chem. B, 102(7), 1077 (1998 )
85 吳弘俊, 清華大學碩士論文, 第3章 (1993).