簡易檢索 / 詳目顯示

研究生: 楊博元
Yang, Bo Yuan
論文名稱: 硼參雜控制電流生成自旋軌道力矩效率之研究
Study of current induced spin orbital torque efficiency manipulation by Boron doping
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 林秀豪
Lin, Hsiu-Hau
郭光宇
Guo, Guang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 76
中文關鍵詞: 自旋軌道力矩效率硼參雜自旋霍爾角阻尼型有效場
外文關鍵詞: Spin orbital torque efficiency, B doping, Spin hall angle, damping-like effective field
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們製備鉑/鈷鎳多層膜結構來研究硼參雜對電流生成自旋軌道力矩效率之影響,利用鉑及硼靶共濺鍍以及在鉑膜層中插入硼膜層的方式來進行硼雜質的參雜。在確保硼雜質不影響鐵磁層的異向性及飽和磁化量的狀況之下,用異常霍爾效應的原理量測元件,取得因電流生成自旋軌道矩而產生的有效磁場(Effective magnetic field)。此有效磁場能轉換成自旋霍爾角(Spin hall angle),作為評價電流生成自旋軌道力矩效率的依據。實驗結果顯示插入硼膜層相較共濺鍍能更有效的增加因阻尼型(damping-like)力矩誘發的有效磁場,並且此有效場能隨著硼膜厚度增厚而增大至1.8倍,佐以相關的實驗分析,我們推論硼雜質在膜內擴散或是硼層與鉑層介面因濺鍍混合造成的電子散射,貢獻了額外的自旋霍爾效應,因而造成阻尼型有效場的提升,而另一方面,因為膜層結構不改變,Rashba effect 所造成的場型(field-like)力矩誘發有效場並沒有因硼參雜而有明顯變化。最後我們利用磁光柯爾效應儀及電流脈衝產生器對元件進行電流翻轉磁矩的測試,證明硼膜層厚度增加,亦能使得相鄰鐵磁層的臨界翻轉電流減小,與有效場的量測結果相互印證。
    我們能從這一系列的實驗結果了解到硼參雜能額外的提升電流通過鉑層產生的自旋軌道力矩效率,使得阻尼型(damping-like)力矩誘發的有效磁場增大,並且也展示了元件磁矩的臨界翻轉電流能隨著硼膜層的增厚而降低。相關原理具有應用於提升未來自旋電子元件效能,以及降低下一代SOT-MRAM驅動電流之潛力。


    B doping effect on the spin orbital torque efficiency has been investigated in this work. The Ti (5nm)/ Pt (5nm, B doped)/ [Co (0.2nm)/ Ni (0.6nm)]2/ Ti (5nm) structures were prepared, and we directly doped B into Pt layer by co-sputtering and by inserting B dusting layer into Pt layer. Under the premise that the anisotropy field (H_k) and the saturation magnetization (M_s) of the Co/Ni multilayers are barely affected by the B doping, we analyze the spin orbital torque induced magnetic effective field by locking measurement. The results show that dusting layer can be more effective than the co-sputtering method in increasing the damping-like torque induced longitudinal effective field (〖ΔH〗_L), which may also due to different amount of the B dopants. Furthermore, by changing the dusting layer insert position in Pt and the dusting layer thickness, we found that setting the dusting layer at the middle of the Pt layer gain the largest 〖ΔH〗_L and it increase with the B dusting layer thickness, which can be 67% larger than the non-doped sample. Finally, we apply the magnetization switching test and realize that the critical switching current density also reduced with the increasing dusting layer thickness.
    It can be inferred that additional spin orbital torque can be induced by the B impurity in the Pt layer. Furthermore, we also clearly demonstrate that the critical current for magnetization switching can be reduced by setting the B dusting layer, which shows potential for improving performance of future spintronic devices .

    Chapter 1 Introduction 1 1.1 Foreword 1 1.2 Motivation 2 1.3 Outline 3 Chapter 2 Background 4 2.1 Multilayers with perpendicular magnetic anisotropy 4 2.1.1 Origin of the perpendicular magnetic anisotropy in Co/Ni 5 2.1.2 Structural dependent magnetic properties of Co/Ni multilayers 6 2.1.3 Application of Co/Ni multilayers 9 2.2 Introduction to spin orbital torque 11 2.2.1 Rashba effect on spin orbital torque 12 2.2.2 Spin Hall Effect on spin orbital torque 15 2.2.3 Field-like and damping-like torque 17 2.2.4 SOT induced magnetization switching 19 2.3 Impurity and resistivity effect on the spin orbital torque 23 2.3.1 Origin of extrinsic Spin Hall effect in metallic systems 24 2.3.2 Impurity effect on the Spin Hall effect 25 2.3.3 Resistivity and spin orbital torque efficiency 29 Chapter 3 Experimental Techniques 34 3.1 Sample preparations 34 3.1.1 Magnetron sputtering 34 3.1.2 Annealing process 35 3.2 Device fabrication 36 3.2.1 Photolithography 36 3.2.2 Lift-off process 37 3.2.3 Inductively coupled plasma enhanced ion etching (ICP-RIE) 38 3.3 Structural characterization 39 3.3.1 X-ray diffraction (XRD) 39 3.3.2 Atomic force microscopy (AFM) 40 3.4 Magnetic analyses 41 3.4.1 Vibration sample magnetometer (VSM) 41 3.4.2 Focused polar magneto-optical Kerr effect 42 3.4.3 Anomalous Hall effect (AHE) measurement 43 Chapter 4 Experimental results 44 4.1 Introduction 44 4.2 Experimental procedure 46 4.3 Result and discussion 49 4.3.1 Properties of co-sputtered B doped samples 49 4.3.2 Harmonic measurement for samples with B dusting layers 58 4.3.3 SOT efficiency with respect to B dusting layer thickness 62 Chapter 5 Conclusion and future work 69 5.1 Conclusion 69 5.2 Future works 71 Reference 72

    1. Kimura, T., Otani, Y., Sato, T., Takahashi, S., & Maekawa, S. (2007). Room-temperature reversible spin Hall effect. Physical review letters, 98(15), 156601.
    2. Liu, L., Pai, C. F., Li, Y., Tseng, H. W., Ralph, D. C., & Buhrman, R. A. (2012). Spin-torque switching with the giant spin Hall effect of tantalum. Science,336(6081), 555-558.
    3. Niimi, Y., Kawanishi, Y., Wei, D. H., Deranlot, C., Yang, H. X., Chshiev, M. & Otani, Y. (2012). Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys. Physical review letters, 109(15), 156602.
    4. Hoffmann, A. (2013). Spin Hall effects in metals. Magnetics, IEEE Transactions on, 49(10), 5172-5193.
    5. Pai, C. F., Liu, L., Li, Y., Tseng, H. W., Ralph, D. C., & Buhrman, R. A. (2012). Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Applied Physics Letters, 101(12), 122404.
    6. Niimi, Y., Morota, M., Wei, D. H., Deranlot, C., Basletic, M., Hamzic, A, & Otani, Y. (2011). Extrinsic spin Hall effect induced by iridium impurities in copper. Physical review letters, 106(12), 126601.
    7. Guo, G. Y., Maekawa, S., & Nagaosa, N. (2009). Enhanced spin hall effect by resonant skew scattering in the orbital-dependent kondo effect. Physical review letters, 102(3), 036401.
    8. Ne'el, L. (1954). Magnetic surface anisotropy and oriented superstructures (directional order). J. Phys. Radium, 15, 225.
    9. Carcia, P. F., Meinhaldt, A. D., & Suna, A. (1985). Perpendicular magnetic anisotropy in Pd/Co thin film layered structures. Applied Physics Letters, 47(2), 178-180.
    10. Zeper, W. B., Greidanus, F. J. A. M., Carcia, P. F., & Fincher, C. R. (1989). Perpendicular magnetic anisotropy and magneto‐optical Kerr effect of vapor‐deposited Co/Pt‐layered structures. Journal of Applied Physics, 65(12), 4971-4975.
    11. Johnson, M. T., Bloemen, P. J. H., Den Broeder, F. J. A., & De Vries, J. J. (1996). Magnetic anisotropy in metallic multilayers. Reports on Progress in Physics, 59(11), 1409.
    12. Mes, M. H., Lodder, J. C., Takahata, T., Moritani, I., & Imamura, N. (1993). CoNi/Pt Multilayers for Magneto-optical Recording.
    13. Den Broeder, F. J. A., Janssen, E., Hoving, W., & Zeper, W. B. (1992). Perpendicular magnetic anisotropy and coercivity of Co/Ni multilayers. Magnetics, IEEE Transactions on, 28(5), 2760-2765.
    14. Shaw, J. M., Nembach, H. T., & Silva, T. J. (2013). Measurement of orbital asymmetry and strain in Co 90 Fe 10/Ni multilayers and alloys: Origins of perpendicular anisotropy. Physical Review B, 87(5), 054416.
    15. Zhang, Y. B., Woollam, J. A., Shan, Z. S., Shen, J. X., & Sellmyer, D. J. (1994). Anisotropy and magneto-optical properties of sputtered Co/Ni multilayer thin films. Magnetics, IEEE Transactions on, 30(6), 4440-4442.
    16. Den Broeder, F. J. A., Janssen, E., Mud, A., & Kerkhof, J. M. (1993). Co/Ni multilayers with perpendicular magnetic anisotropy. Journal of magnetism and magnetic materials, 126(1), 563-568.
    17. Daalderop, G. H. O., Kelly, P. J., & Den Broeder, F. J. A. (1992). Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers. Physical review letters, 68(5), 682.
    18. Jan, G., Kula, W., Tong, R. Y., & Wang, Y. J. (2014). U.S. Patent Application No. 14/529,251.
    19. Bloemen, P. J. H., De Jonge, W. J. M., & Den Broeder, F. J. A. (1992). Magnetic anisotropies in Co/Ni (111) multilayers. Journal of applied physics,72(10), 4840-4844.
    20. Kurt, H., Venkatesan, M., & Coey, J. M. D. (2010). Enhanced perpendicular magnetic anisotropy in Co/Ni multilayers with a thin seed layer. Journal of Applied Physics, 108(7), 073916.
    21. Yang, E., Sokalski, V. M., Moneck, M. T., Bromberg, D. M., & Zhu, J. G. (2013). Annealing effect and under/capping layer study on Co/Ni multilayer thin films for domain wall motion. Journal of Applied Physics, 113(17), 17C116.
    22. You, L., Sousa, R. C., Bandiera, S., Rodmacq, B., & Dieny, B. (2012). Co/Ni multilayers with perpendicular anisotropy for spintronic device applications. Applied Physics Letters, 100(17), 172411.
    23. Chiba, D., Yamada, G., Koyama, T., Ueda, K., Tanigawa, H., Fukami, S & Ono, T. (2010). Control of multiple magnetic domain walls by current in a Co/Ni nano-wire. Applied Physics Express, 3(7), 073004.
    24. Li, Z., Zhang, Z., Zhao, H., Ma, B., & Jin, Q. Y. (2009). High giant magnetoresistance and thermal annealing effects in perpendicular magnetic [Co/Ni] N-based spin valves. Journal of Applied Physics, 106(1), 3907.
    25. Bychkov, Y. A., & Rashba, E. I. (1984). Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. Journal of physics C: Solid state physics, 17(33), 6039.
    26. Miron, I. M., Moore, T., Szambolics, H., Buda-Prejbeanu, L. D., Auffret, S., Rodmacq & Gaudin, G. (2011). Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Materials, 10(6), 419-423.
    27. Bauer,G. E., Saitoh, E., & van Wees, B. J. (2012). Spin caloritronics. Nature materials, 11(5), 391-399.
    28. Dyakonov, M. I., & Perel, V. I. (1971). Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 35(6), 459-460.
    29. M. I. Dyakonov and V. I. Perel, Pisma Zh. Eksp. Teor. Fiz. 13,657 (1971) , JETP Lett. 13,467
    30. Hirsch, J. E. (1999). Spin hall effect. Physical Review Letters, 83(9), 1834.
    31. Kato, Y. K., Myers, R. C., Gossard, A. C., & Awschalom, D. D. (2004). Observation of the spin Hall effect in semiconductors. science, 306(5703), 1910-1913.
    32. Kimura, T., Otani, Y., Sato, T., Takahashi, S., & Maekawa, S. (2007). Room-temperature reversible spin Hall effect. Physical review letters, 98(15), 156601.
    33. Kim, J., Sinha, J., Hayashi, M., Yamanouchi, M., Fukami, S., Suzuki & Ohno, H. (2013). Layer thickness dependence of the current-induced effective field vector in Ta| CoFeB| MgO. Nature materials, 12(3), 240-245.
    34. Liu, L., Pai, C. F., Li, Y., Tseng, H. W., Ralph, D. C., & Buhrman, R. A. (2012). Spin-torque switching with the giant spin Hall effect of tantalum. Science,336(6081), 555-558.
    35. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C., & Buhrman, R. A. (2012). Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Physical review letters, 109(9), 096602.
    36. Niimi, Y., & Otani, Y. (2015). Reciprocal spin Hall effects in conductors with strong spin? orbit coupling: a review. Reports on Progress in Physics, 78(12), 124501.
    37. Wunderlich, J., Kaestner, B., Sinova, J., & Jungwirth, T. (2005). Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Physical review letters, 94(4), 047204.
    38. Seki, T., Hasegawa, Y., Mitani, S., Takahashi, S., Imamura, H., Maekawa, S & Takanashi, K. (2008). Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nature Materials, 7(2), 125-129.
    39. Guo, G. Y., Maekawa, S., & Nagaosa, N. (2009). Enhanced spin hall effect by resonant skew scattering in the orbital-dependent kondo effect. Physical review letters, 102(3), 036401.
    40. Gradhand, M., Fedorov, D. V., Zahn, P., & Mertig, I. (2010). Extrinsic spin Hall effect from first principles. Physical review letters, 104(18), 186403..
    41. Gradhand, M., Fedorov, D. V., Zahn, P., & Mertig, I. (2010). Spin Hall angle versus spin diffusion length: Tailored by impurities. Physical Review B, 81(24), 245109.
    42. Pai, C. F., Liu, L., Li, Y., Tseng, H. W., Ralph, D. C., & Buhrman, R. A. (2012). Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Applied Physics Letters, 101(12), 122404.
    43. Tanaka, T., Kontani, H., Naito, M., Naito, T., Hirashima, D. S., Yamada, K., & Inoue, J. (2008). Intrinsic spin hall effect and orbital Hall effect in 4 d and 5 d transition metals. Physical Review B, 77(16), 165117.
    44. Demasius, K. U., Phung, T., Zhang, W., Hughes, B. P., Yang, S. H., Kellock, A & Parkin, S. S. (2016). Enhanced spin-orbit torques by oxygen incorporation in tungsten films. Nature communications, 7.
    45. Nguyen, M. H., Ralph, D. C., & Buhrman, R. A. (2015). Spin torque study of the spin Hall conductivity and spin diffusion length in platinum thin films with varying resistivity. arXiv preprint arXiv:1512.06931.
    46. Qin, C., Luo, Y., Zhou, C., Cai, Y., Chen, S., Wu, Y., & Ji, Y. (2015, March). Spin Hall effects from mesoscopic Pt films with high resistivity. In APS Meeting Abstracts (Vol. 1, p. 28010).
    47. Ikeda, S., Hayakawa, J., Lee, Y. M., Matsukura, F., Ohno, Y., Hanyu, T., & Ohno, H. (2007). Magnetic tunnel junctions for spintronic memories and beyond. Electron Devices, IEEE Transactions on, 54(5), 991-1002.
    48. Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H. D., Endo, M, & Ohno, H. (2010). A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature materials, 9(9), 721-724.
    49. Greer, A. A., Gray, A. X., Kanai, S., Kaiser, A. M., Ueda, S., Yamashita, & Conti, G. (2012). Observation of boron diffusion in an annealed Ta/CoFeB/MgO magnetic tunnel junction with standing-wave hard x-ray photoemission. Applied Physics Letters, 101(20), 202402.
    50. Nistor, L. E., Rodmacq, B., Ducruet, C., Portemont, C., Prejbeanu, I. L., & Dieny, B. (2010). Correlation between perpendicular anisotropy and magnetoresistance in magnetic tunnel junctions. Magnetics, IEEE Transactions on, 46(6), 1412-1415.
    51. Harnchana, V., Hindmarch, A. T., Sarahan, M. C., Marrows, C. H., Brown, A. P., & Brydson, R. M. D. (2013). Evidence for boron diffusion into sub-stoichiometric MgO (001) barriers in CoFeB/MgO-based magnetic tunnel junctions. Journal of Applied Physics, 113(16), 163502.
    52. Torrejon, J., Kim, J., Sinha, J., Yamanouchi, M., Mitani, S., Hayashi, M., & Ohno, H. (2013). Interface control of the magnetic chirality in TaN| CoFeB| MgO heterosctructures. arXiv preprint arXiv:1308.1751.
    53. Oh, Y. W., Lee, K. D., Jeong, J. R., & Park, B. G. (2014). Interfacial perpendicular magnetic anisotropy in CoFeB/MgO structure with various underlayers. Journal of Applied Physics, 115(17), 17C724.
    54. Mukherjee, S., Knut, R., Mohseni, S. M., Nguyen, T. A., Chung, S., Le, Q. T., & Pal, B. (2015). Role of boron diffusion in CoFeB/MgO magnetic tunnel junctions. Physical Review B, 91(8), 085311.
    55. Fleischmann, C., Almeida, F., Demeter, J., Paredis, K., Teichert, A., Steitz, R., & Temst, K. (2010). The influence of interface roughness on the magnetic properties of exchange biased CoO/Fe thin films. Journal of Applied Physics, 107(11), 113907.
    56. Wang, J.Q.& Xiao, G.(1995).Large finite-size effect of giant magnetoresistance in magnetic granular thin films. Physical Review B, 51(9), 5863.
    57. Gerber, 3. A., Milner, A., Finkler, A., Karpovski, M., Goldsmith, L., Tuaillon-Combes, J.,& Perez, A. (2004). Correlation between the extraordinary Hall effect and resistivity. Physical Review B, 69(22), 224403.
    58. Lee, K. S., Lee, S. W., Min, B. C., & Lee, K. J. (2013). Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Applied Physics Letters, 102(11), 112410.
    59. Zhang, C., Yamanouchi, M., Sato, H., Fukami, S., Ikeda, S., Matsukura, F., & Ohno, H. (2014). Magnetization reversal induced by in-plane current in Ta/CoFeB/MgO structures with perpendicular magnetic easy axis. Journal of Applied Physics, 115(17), 17C714.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE