研究生: |
陳致穎 |
---|---|
論文名稱: |
即時動態次結構系統之控制策略比較 Comparison of Control Strategies for Real-Time Dynamically Substructured Systems |
指導教授: | 杜佳穎 |
口試委員: |
洪哲文
白明憲 杜佳穎 洪翊軒 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 動態次結構測試法 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
動態次結構測試法為混合測試法其中一種,同時具有數值模擬的方便性與物理元件的真實性,將待測系統中欲測試部分以實際物理元件搭建,其餘部分建模於電腦中,能實際搭建待測系統中任一部分,且以系統原尺寸進行測試,真實貼近物理元件動態行為,同時數值模擬則降低了實驗所需空間與成本,使動態次結構測試成為有效率的工程結構測試法。成功的動態次結構測試需要達成數值與物理兩次結構之接觸面輸出響應一致,運行如未拆解前系統,但物理次結構中伴隨機械致動元件而來的不理想動態破壞了輸出響應間的同步,此時我們需要優良且強健的控制器來確保測試成功。本研究將從文獻中提出三種控制策略,包含(i)仿真系統基礎、(ii)數值次結構基礎與(iii)輸出基礎控制策略,分析其優缺點,找出最適合即時動態次結構測試法之控制策略。前兩種控制策略將搭配動態基礎設計出典型的相位補償控制器;而輸出基礎控制策略則是採用幾何基礎,依據前向預測與曲線配適概念設計出時間延遲補償控制器。
本論文將使用一組單輸入單輸出的質量彈簧阻尼系統做為實例,從控制器設計過程即開始控制策略之比較,並在常態與干擾條件下觀察三種控制策略之表現,分析其優缺點與強健性,最後從設計過程、實驗與模擬表現皆得出相同結果,典型相位補償控制器能提供較佳的控制表現與穩定性,而幾何基礎控制器因無考慮系統動態特性,並不適用於即時動態次結構測試法。
[1] M. S. Williams, and A. Blakeborough, "Laboratory testing of structures under dynamic loads: an introductory review," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 359, pp. 1651-1669, 2001.
[2] C. J. Dodds, and Plummer, A. R., "Laboratory road simulation for full vehicle testing : A Review," presented at the Symposium on International Automotive Technology, 2001.
[3] X. Ji, Kajiwara, Kouichi, Nagae, Takuya, Enokida, Ryuta, Nakashima, Masayoshi, "A substructure shaking table test for reproduction of earthquake responses of high-rise buildings," Earthquake Engineering & Structural Dynamics, vol. 38, pp. 1381-1399, 2009.
[4] F. Aghili, "A Mechatronic Testbed for Revolute-Joint Prototypes of a Manipulator," Robotics, IEEE Transactions on, vol. 22, pp. 1265-1273, 2006.
[5] K. Dressler, M. Speckert, and G. Bitsch, "Virtual durability test rigs for automotive engineering," Vehicle System Dynamics, vol. 47, pp.387-401, 2009.
[6] A. M. Reinhorn, M. Bruneau, S. Chu, X. Shao, and M. Pitman, "Large scale real time dynamic hybrid testing technique–Shake tables substructure testing," in Proceedings of ASCE Structures Congress, 2003, pp. 457-464.
[7] A. P. Darby, A. Blakeborough, and M. S. Williams, "Improved control algorithm for real-time substructure testing," Earthquake Engineering & Structural Dynamics, vol. 30, pp. 431-448, 2001.
[8] J. Y. Tu, "Development of numerical-substructure-based and output-based substructuring controllers," Structural Control and Health Monitoring, vol. 20, pp. 918-936, DOI: 10.1002/stc.1505,June 2013.
[9] D. P. Stoten and R. A. Hyde, "Adaptive control of dynamically substructured systems: the single-input single-output case," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 220, pp. 63-79, 2006.
[10] S. A. Neild, D. P. Stoten, D. Drury, and D. J. Wagg, "Control issues relating to real-time substructuring experiments using a shaking table," Earthquake Engineering & Structural Dynamics, vol. 34, pp. 1171-1192, 2005.
[11] M. S. W. P. A. Bonnet, and A Blakeborough, "Compensation of actuator dynamics in real-time hybrid tests," in Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2007, pp. 251-264.
[12] M. I. Wallace, Wagg, D.J and S. A. Neild, "An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, vol. 461, pp. 3807-3826, December 8 2005.
[13] M. Nasiri and M. Montazeri-Gh, "Time-delay compensation for actuator-based hardware-in-the-loop testing of a jet engine fuel control unit," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, August 24, 2012.
[14] J. Y. Tu, Stoten, D. P., Hyde, R. A., and Li, G., "A state-space approach for the control of multivariable dynamically substructured systems," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 225, pp. 935-953, 2011.
[15] E. Kreyszig, "Advanced engineering mathematics", New York: Wiley, 1999.
[16] H. WD, T. JY. , and C. CY., "Dynamic Substructuring using Adaptive Forward Prediction Algorithm with Direct Delay Compensation Technique," in Asian Control Conference Istanbul, 2012.
[17] M. I. Wallace, Sieber, J., Neild, S. A., Wagg, D. J., and Krauskopf, B., "Stability analysis of real-time dynamic substructuring using delay differential equation models," Earthquake Engineering & Structural Dynamics, vol. 34, pp. 1817-1832, 2005.
[18] L. T. Engelborghs K, and Roose D., "Numerical bifurcation analysis of delay di erential equations using DDE-BIFTOOL," ACM Transactions on Mathematical Software, vol. 28, pp. 1-21, 2002.
[19] Y. C. Chen, "Development and application of active real-time control system for multi-degree-of-freedom shaking table," MSc thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2012.
[20] H. T. Yang, "Development of synchronisation controllers for substructuring tests of base-isolated structure systems," MSc thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2012.