研究生: |
黃英松 Ying-Sung Huang |
---|---|
論文名稱: |
在奇數環上個體無差異之最佳交互執行器 Optimal alternators on synchronous uniform rings of odd size |
指導教授: |
黃興燦
Shing-Tsaan Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 英文 |
中文關鍵詞: | 交互執行器 、自我穩定 |
外文關鍵詞: | alternator, self-stabilizing |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
所謂的自我穩定,是1974年由Dijkstra[D74]所提出,一個自我穩定的系統,不需要任何初始化的動作(Initialization),也不管其起始的狀態為何,系統本身可以保證在有限時間內自動偵測錯誤並修復,使系統回到合理一穩定狀態(Legitimate states)。
交互執行器,是由M. G. Gouda 以及 F. Haddix [GH99b] 提出,它能夠解決許多同步上的問題。交互執行器是由一堆程緒所組成的網路,並滿足以下三個條件:(1)如果一個程序進入臨界區間內,其相鄰之程序絕對不會同時進入臨界區間。(2)經過無限多的步驟後,每個程序能進入臨界區間的次數也是無限多次。(3)該交互執行器為一自我穩定系統,在一定時間內,會自動滿足以上的條件。在[GH99b]中所提出的交互執行器,只能運行在非個體無差異的網路下,它也不會在任何網路下都是一個最佳交互執行器。
由於[GH99b]的交互執行器在某些特殊的網路之下,其效率不彰,我們便針對了這一點,對特殊的網路設計特別的交互執行器。我們提出了一個方法,使得該方法在環上有著良好的執行效率,在奇數環上更是最佳化的交互執行器。這一個方法可以使用在一般性、個體無差異的環上。其執行模式為同步模式(Synchronous model)。
An alternator is a network of concurrent processes, which satisfies the following conditions. (1) If one process executes the critical step, no neighbor of the process executes the critical step at the same time. (2) Along any infinite time, each process executes the critical step infinitely often. (3) The alternator is self-stabilizing to the above conditions.
In this paper, we proposed a design of alternators for rings. The protocol is optimal in the sense that each node can execute the critical step at least once every three steps when it works on rings of odd size.
[ABDT98] L. O. Alima, J. Beauquier, A. K. Datta and S. Tixeuil, Self-stabilization with global rooted synchronizers, Distributed Computing Systems, 1998. Proceedings. 18th International Conference on, 1998, Page(s):102-109
[ADG91] Arora A, Dolev S, Gouda MG: Maintaining Digital Clocks In Step. Parallel Process Letter 1:11-18(1991)
[BGW89] G. M. Brown, M.G. Gouda, and C. L. Wu, Token systems that self-stabilize, IEEE Transactions on Computers, 38:845-852, 1989
[BP89] Burns JE, Pachl J: Uniform self-stabilizing rings. ACM Transactions on Programming Languages and Systems, 11:330-344(1989)
[D74] E. W. Dijkstra, Self-stabilizing systems in spite of distributed control, Communications of the Association of the Computing Machinery, 17:643-644, 1974.
[FD94] Flatebo M, Datta AK: Two-State Self-Stabilizing Algorithms for Token Rings. IEEE Transactions on Software Engineering 20: 500-504(1994)
[GH90] Gouda MG, Herman T: Stabilizing Unison. Information Processing Letter 35:171-175(1990)
[GH96] Gouda MG, Haddix FF: The Stabilizing Token Ring in Three Bits. J Parallel Distributed Computing 35:43-48(1996).
[GH99b] M. G. Gouda and F. Haddix, The Alternator, Proceedings of the Third Workshop on Self-Stabilizing Systems, pages 48-53, 1999
[GK93a] S. Ghosh and M. H. Karaata, A self-stabilizing algorithm for coloring planar graphs, Distributed Computing, 7:55-59, 1993.
[H00] S. T. Huang, The fuzzy philosophers, Lecture Notes in Computer Acience1800, IPDPS 2000 Workshops Cancun, Mexico, May1-5, 2000,pp.130-136.
[H93] S. T. Huang, Leader election in uniform rings, ACM Transactions on Programming Languages and Systems, 15:563-573, 1993.
[HC00] S. T. Huang and B. W. Chen, synchronous Alternators, to appear in Information Processing Letters, 2001
[HER90] T. Herman. Probabilistic self-stabilization. Information processing Letters, 35:63-67,1990
[HG95] Herman T, Ghosh S: Stabilizing Phase-Clocks. Information Processing Letter 54: 259-265(1995)
[HL98] S. T. Huang and T. J. Liu, Four State stabilizing phase clock for unidirectional rings of odd size, Information Processing Letters 65(1998), page 325-329.
[HL99] S. Huang and T. Liu. Self-stabilizing 2(m)-clock for unidirectional rings of odd size. Distributed Computing, 12:41-46,1999
[LS95] C. Lin and J. Simon, Possibility and impossibility results for self-stabilizing phase clocks on synchronous rings, Proceedings of the Second Workshop on Self-Stabilizing Systems, pages 10.1-10.15, 1995.