研究生: |
余南輝 Yu, Nan Huei |
---|---|
論文名稱: |
微型三維梯度折射率鏡片之製造 Manufacture of Three-dimensional Gradient Index Micro-lenses |
指導教授: |
王培仁
Wang, Pei Jen |
口試委員: |
陳政寰
Chen, Cheng Huan 羅丞曜 Lo, Cheng Yao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 梯度折射率透鏡 、光固化成型技術 、電腦輔助製造 |
外文關鍵詞: | Gradient Index Lens, Stereolithography, Computer Aided Manufacture |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
梯度折射率透鏡(Gradient Index Lens 簡稱GRIN Lens)以其材料折射率分層分佈達到改變光線行進路線之光學效果,可用來取代傳統透鏡以曲面來達成的光學特性,更可設計成平面板狀,減少因幾何曲面所導致的高階像差。折射率分層分布的特性,使梯度折射率透鏡的製造須跳脫傳統以幾何外型為主的製造方式,改以製造特性與其需求相符的疊層製造(Layered Manufacture)搭配,其中光固化成型技術(Stereolithography)具有材料易參雜產生折射率梯度,且成品具有透光性等性質,與梯度折射率透鏡需求相符,成為目前研究的主要重點。
本論文將採用疊層製造方式來製造梯度折射率透鏡,故須控制材折射率分佈特性,而現有電腦輔助製造系統無法滿足此製造之需求,因此論文研究根據梯度折射率透鏡所需特性,與配合光固化成型技術製造需求,計算出滿足此規格之製造路徑規劃,再驅動小雙軸平台與大三軸平台組合之製造設備,達到定位精度皆為1微米以內,並控制綠光之固態雷射光源,嘗試完成透鏡陣列之製造規格需求。
關鍵詞:梯度折射率透鏡、光固化成型技術、電腦輔助製造
Gradient Index Lens (GRIN Lens) can replace conventional spherical lenses made by curvature surfaces with the optical effects achieved via layers in variable index of refraction to effectively change light path in the lens. Moreover, GRIN lens can reduce spherical aberrations due to curvature surface if the optics design uses flat surface. Due to distribution in refraction index in various layers, the manufacture of GRIN lens must be different from conventional shape forming process so that layered manufacture process could fulfill the GRIN lens requirements. Stereolithography is the research target in this thesis due to the gradient index refraction being possible by doping impurities into base materials to exhibit transparent property.
In this thesis, we use layered manufacture method to make GRIN lens, hence, control of distribution in index of refraction cannot achieved with conventional Computer Aided Manufacturing Systems. Therefore, this research devises a method by Stereolithography to compose programs for the tool paths for the equipment constructed by a small two-axis platform and a large three-axis table with 1 m positioning accuracy. A green light laser photo-cures the lens array to fulfill the manufacture requirements.
Keywords: Gradient Index Lens, Stereolithography, Computer Aided Manufacture
[1] P. Kulkarni, A. Marsan, and D. Dutta, "A review of process planning techniques in layered manufacturing," Rapid Prototyping Journal, vol. 6, pp. 18-35, 2000.
[2] W. contributors. Available: https://en.wikipedia.org/w/index.php?title=Gradient-index_optics&oldid=692630890
[3] H. Trost, S. Ayers, T. Chen, W. Cox, M. Grove, and R. Hoenigman, "Using drop-on-demand technology for manufacturing grin lenses," Proc. 2001 Ann. Mtg. ASPE, pp. 10-15, 2001.
[4] H.R. Wang, M. J. Cima, B. D. Kernan, and E. M. Sachs, "Alumina-doped silica gradient-index (GRIN) lenses by slurry-based three-dimensional printing (S-3DP™)," Journal of non-crystalline solids, vol. 349, pp. 360-367, 2004.
[5] C. Ye and R. R. McLeod, "GRIN lens and lens array fabrication with diffusion-driven photopolymer," Optics letters, vol. 33, pp. 2575-2577, 2008.
[6] H.B. Sun and S. Kawata, "Two-photon photopolymerization and 3D lithographic microfabrication," in NMR• 3D Analysis• Photopolymerization, ed: Springer, 2006, pp. 169-273, 2006.
[7] Y. Cho, I. Lee, and D.-W. Cho, "Laser scanning path generation considering photopolymer solidification in micro-stereolithography," Microsystem technologies, vol. 11, pp. 158-167, 2005.
[8] R. C. Luo, Y. L. Pan, C. J. Wang, and Z. H. Huang, "Path planning and control of functionally graded materials for rapid tooling," in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pp. 883-888, 2006.
[9] S. J. Rock and M. J. Wozny, "Generating topological information from a bucket of facets," in Proceedings of Solid Freeform Fabrication Symposium, Austin, TX, Aug, pp. 3-5, 1992.
[10] C. Zhou, "A Direct Tool Path Planning Algorithm for Line Scanning Based Stereolithography," Journal of Manufacturing Science and Engineering, vol. 136, p. 061023, 2014.
[11] M. Teschner, B. Heidelberger, M. Müller, D. Pomerantes, and M. H. Gross, "Optimized Spatial Hashing for Collision Detection of Deformable Objects," in VMV, pp. 47-54, 2003.
[12] T. Nakamoto, K. Yamaguchi, P. A. Abraha, and K. Mishima, "Manufacturing of three-dimensional micro-parts by UV laser induced polymerization," Journal of micromechanics and microengineering, vol. 6, p. 240, 1996.
[13] Danzebrink, R., and Aegerter, M. A., "Deposition of optical microlens arrays by ink-jet processes," Thin Solid Films, 392(2), 223-225, 2001.
[14] Printing, I. J., Micro-Optics Fabrication. Optics & Photonics News, 2001.
[15] Yulin, L., Tonghai, L., Guohua, J., Baowen, H., Junmin, H., and Lili, W., Research on micro-optical lenses fabrication technology. Optik-International Journal for Light and Electron Optics, 118(8), 395-401, 2007
[16] SYNTEC., 安裝與連線設定. Available: http://www.syntecclub.com.tw/cncrel/Manual/ PDF/%E5%AE%89%E8%A3%9D%E8%88%87%E9%80%A3%E7%B7%9A%E8%A8%AD%E5%AE%9A%E8%AA%AA%E6%98%8E%E6%89%8B%E5%86%8A.pdf, 2015.
[17] Oriental Motor Inc., Japan, ARL98轉速-轉矩特性Available: https://www.orientalmotor.com.tw/products_file/st/image/tct_arl98_standardd.gif