研究生: |
郭致賢 Kuo, Chi-Hsien |
---|---|
論文名稱: |
於自組裝單分子膜表面製備聚苯胺導線之研究 Preparation of surface-grafted polyaniline wires from self assembled monolayer-modified surfaces |
指導教授: |
陶雨台
Tao, Yu-Tai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 聚苯胺 、自組裝單分子膜 、分子導線 、混合自組裝單分子膜 |
外文關鍵詞: | polyaniline, self-assembled monolayer, molecular wire, mixed self-assembled monolayer |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在漸漸崛起的分子電子學領域中,可控制長度與尺寸的分子導線是非常重要的元件之一。在此研究中,我們在分散且均勻混合的自組裝單層分子膜表面,以四聚苯胺為起發劑,起始表面聚合反應,在矽晶片表面製備了奈米尺度且分散良好的聚苯胺分子導線。
我們將修飾了羥基的矽晶片沒入含有不同莫耳分率比的正壬三氯矽烷與10-烯十一烷三氯矽烷的混合溶液,製備混合自組裝單分子膜。末端烯基經由高錳酸鉀氧化為羧酸;羧酸官能基經由二咪唑甲酮活化後,與四聚苯胺偶合,利用醯胺鍵結將四聚苯胺分子固定在自組裝單層膜表面。以此薄膜為起始反應基板,加入氧化劑過硫酸銨以及苯胺的鹽酸溶液,在酸性環境下進行表面氧化嫁接聚合反應。經由這一系列的化學處理,我們得到了奈米尺度的聚苯胺分子導線。我們利用傅立葉紅外線光譜儀(Fourier transform infrared spectroscopy)、原子力顯微鏡(atomic force microscopy)、接觸角測量(contact angle measurement)、以及丹醯螢光探針等分析方法,分別鑑定兩個系統的混合自組裝單分子膜以及聚苯胺導線於基材表面的組成、分佈與形貌。這個設計提供了一個具有分散良好活化官能基的表面,可以提供進一步的衍生反應。在我們的例子中,我們經由這樣的實驗設計,以表面嫁接聚合反應,製備了獨立且均勻分散的高分子導線。
Conductive molecular wires of controlled size and length are important components in the emerging field of molecular electronics. In this work we report the preparation of nanometer size polyaniline wires on a silicon wafer surface. Through a surface-initiated polymerization from a mixed self-assembled monolayer in which initiators (tetraanilines) are randomly and sparsely tethered, polyaniline chains well separated from each other were generated.
A self-assembled mixed monolayer of n-nonylsilane and 10-undecylenylsilane was first generated by treating a hydroxylated silicon surface with a mixture of n-nonyltrichlorosilane and 10-undecylenyltrichlorosilane in various molar ratio. The terminal vinyl group was oxidized with KMnO4 to carboxyl group, which was activated with carbonyldimidazole. Aniline oligomer (p-tetraaniline) was tethered to the surface through the amidation reaction. Graft polymerization of aniline from the tetraaniline moiety was carried out to give conductive polyaniline (PANI) in nanometer lengths[1] The surface composition, distribution, and morphology of the mixed monolayer, as well as the grafted PANI, were characterized by attenuated total reflectance Fourier transform infrared (ATR/FT-IR) spectroscopy , atomic force microscopy (AFM), contact angle measurement, and fluorescent dansyl probe. The method provides a functional surface with well-dispersed active sites as a reaction template for further derivatization/polymerization. In our case, it provides a new strategy for the generation of isolated conductive polymer wires via graft polymerization.
1. Dall’ Olio, A.; Dascola, G.; Varacca, V. and Bocchi, V. Acad. Sci. Ser., 1968, 433, C267.
2. Heeger, A. J., J. Phys. Chem. B 2001, 105, 8475.
3. MacDiarmid, A. G., Angew. Chem. Int. Ed., 2001, 40, 2581.
4. MacDiarmid, A. G.; Epstein, A. J., Faraday Discussions, 1989, 88, 317.
5. Genies, E. M.; Boyle, A.; Lapkowski, M. and Tsintavis, C., Synthetic Metals, 1990, 139.
6. Heeger, A. J., Angew. Chem. Int. Ed., 2001. 40, 2591.
7. Epstein, A.J.; MacDiarmid, A.G., Mol. Cryst. Liq. Cryst., 1988. 160, 165.
8. Wudl, F.; Angus, R.O. Jr.; Lu, F.L.; Allemand, P.M.; Vachon, D.J.; Nowak, M.; Liu,Z.X.; Heeger, A.J., J. Am. Chem. Soc., 1987. 109. 3677.
9. Angelopoulos, M.; Liao, Y.H.; Saraf, R.F., Polycrystalline Conducting Polymers and Precursors There of Having Adjustable Morphology and Properties. 2001, U.S. 6,210,606 B1.
10. Yan, F. ; Xue, G., J. Mat. Chem., 1999, 9, 3035.
11. Cao, Y.; Smith, P.; Heeger, A.J., Synth. Met., 1993. 27, 3514.
12. Armes, S. P. ; Miller, J. F., Synth. Met., 1988. 22, 385.
13. Nu, S. L.; Somasiri, N. L. D.; Wu, W. and Yaniger, S. I. Mol. Cryst. Liq. Cryst., 1985, 121, 173.
14. Wang, B.; Tang, J. and Wang, F. Synth. Met., 1987. 18, 323.
15. Bacon, J. and Adams, R. N. J. Am. Chem. Soc., 1968, 90, 6596.
16. Wawzonek, S; and MacIntyre, T. W., J Electrochem. Soc., 1967, 114, 1025; 1972, 119, 1350.
17. Bigelow, W. C.; Pickettl, D. L. and Zisman, W. A., J. Colloid Interface Sci. 1946, 1, 513.
18. Nuzzo, R. G. and Allara, D. L., J. Am. Chem. Soc. 1983, 105, 4481.
19. Delamarche, E.; Michel, B.; Kang, H. and Gerber,C., Langmuir 1994, 10, 4103.
20. (a) Allara, D. L. and Nuzzo, R. G., Langmuir 1985, 1, 54. (b) Laibinis, P. E.; Hickinan, J. J.; Wrighton, M. S.; and Whitesides, G. M., Science 1989, 245, 845. (c) Tao, Y. T.; Lee, M. T. and Chang, S. C., J. Am. Chem. Soc. 1993, 115, 9547.
21. Brzoska, J. B.; Azouz, I. B. and Rondelez, F., Langmuir 1994, 10, 4367.
22. Lee, K. B.; Park, S. J.; Mirkin, C. A.; Smith, J. C.and Mrksich, M., Science 2002, 295, 1702.
23. (a)I. Willner; V. Heleg-Shabtai; R. Blonder; E. Katz; G. Tao, J. Am. Chem. Soc. 1996, 118, 10321. (b)M. Wells; R. M. Crooks; J. Am. Chem. Soc. 1996, 118, 3988. (c)K. Sirkar; A. Revzin; M. V. Pishko; Anal. Chem. 2000, 72, 2930. (d)J. Rao; L. Yan; B. Xu, G. M. Whitesides, J. Am. Chem. Soc. 1999, 121, 2629. (e)J. M. Brockman; A. G. Frutos; R. M. Corn, J. Am. Chem. Soc. 1999, 121, 8044. (f)Y. Dong; C. Shannon, Anal. Chem. 2000, 72, 2371
24. (a) Kumar, A.; Biebuyck, H. A.; Abbott, N. L. and Whitesides, G. M., J. Am. Chem. Soc. 1992, 114, 9188. (b) Laibinis, P. E.; Whitesides, G. M., J. Am. Chem. Soc., 1992, 114, 9022.
25. Chen, C. C. and Lin, J.J., Adv. Mater. 2001, 13, 136.
26. Widrig, C. A.; Alves, C. A.; Porter, M. D., J. Am. Chem. Soc. 1991, 113, 2805.
27. Sagiv, J., J. Am. Chem. Soc. 1980, 102, 92.
28. Tillman, N.; Ulman, A.; Schildkraut, J. S.; Penner, T. L., J. Am. Chem. Soc., 1988, 111, 6136.
29. Tillman, N.; Ulman, A.; Penner, T. L., Langmuir, 1989, 5, 101.
30. Ulman, A. Chem. Rev. 1996, 96, 1533.
31. Bain, C. D. and Whitesides, G. M., J. Am. Chem. Soc. 1989, 111, 7164.
32. Overney, R. M.; Meyer, E.; Frommer, J.; Brodbeck, D.; Lüthi, R.; Howald, L.; Güntherodt, H. J.; Fujihara, M.; Takano, H. and Gotoh, Y., Nature 1992, 359, 133.
33. Siepmann J. I.; and McDonald, I. R., Mol. Phys. 1992, 75, 255.
34. Stranick, S. J.; Tao, Y. T.; Allara, D. L.; and Weiss, P. S., J. Phys. Chem. 1994, 98, 7636.
35. Ulman, A. J.Mater.Educ., 1989, 11, 205.
36. Hadara, Y.; Girolami, G. S. and Nuzzo, R. G., Langmuir, 2003, 19, 5104
37. Frydman, E.; Cohen, H.; Maoz, R. and Sagiv, J., Langmuir, 1997, 13, 5089.
38. A. Garnier ; R. Yassar ; G. Hajlaoui ; F. Horowitz ; F. Deloffre ; B. Servet ; S. Ries ; P. Alnot, J. Amer. Chem. Soc. 1993, 115, 8716.
39. Z. F. Li and E. Ruckenstein, Macromolecules 2002, 35, 9506.
40. Tarachiwin, L.; Kiattibutr, P.; Ruangchuay, L.; Sirivat, A.; Schwank, J., Synth. Met., 2002, 129, 9506.
41. Li, L.; Chen. S.; and Jiang, S., Langmuir 2003, 19, 3266.
42. P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y.-T, Tao, A. N. Parikh, R. G. Nuzzo, J. Am. Chem. Soc. 1991, 113, 7152.
43. Schonherr, H.; Feng, C,; Shovsky, A., Langmuir 2003, 19, 10843.
44. Pavia, D. L.; Lampman, G. M and Kriz, G. S., Introduction to spectroscopy (3rd ed), P51.