簡易檢索 / 詳目顯示

研究生: 謝鎮安
Hsieh, Chen-An
論文名稱: Expression and purification of recombinant human interferon-γ and interleukin-12 employing starch binding domain
利用澱粉吸附區域表現及純化重組人類干擾素-γ及介白素-12
指導教授: 張大慈
Chang, Margaret Dah-Tsyr
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 147
中文關鍵詞: 干擾素-γ介白素-12澱粉吸附區域
外文關鍵詞: interferon-γ, interleukin-12, starch binding domain
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Interleukin-12 (IL-12) has multiple biological effects on T cells and NK cells, including IFN-γ production leading to cellular-mediated immunity. Interferon-γ (IFN-γ) plays a role in inhibition of tumor growth and participates in immunoreactions. Among IFNs, IFN-γ is one of the most important therapeutic proteins since its immunodulation activity is better than the others. As is generally known that the expense for purification of recombinant agricultural, industrial, or therapeutical proteins is often quite high and the process is fairly complicated, hence a production scheme of high efficiency and low cost are practically needed. In this study, to develop an economic expression and purification process for two important cytokines, IL-12 and IFN-γ, fusion proteins AL*IL12 and AL*I consisted of an N-terminal starch binding domain (SBD) from Rhizopus oryzae (RoSBD) glucoamylase, a linker derived from the interdomain sequence of R. oryzae glucoamylase, and a C-terminal human IL-12 or IFN-γ were successfully produced in Pichia pastoris. The recombinant AL*IL12 and AL*I comprising the RoSBD can be secreted to culture medium and one-step purified using starch substance, a suitable material for affinity separation of proteins due to its low-cost, stability, and non-toxicity. The expression yield of AL*IL12 and AL*I was respectively 10 mg/L and 30 mg/L. The biochemical properties including molecular mass, glycosylation pattern, and oligomerization degree of AL*IL12 and AL*I have been characterized, and the regulatory effects of downstream genes by IL12 and IFN-γ have been verified by cellular treatment. Taken together, our recombinant IL-12 and IFN-γ have the potential to be further developed for diagnostic and therapeutic applications.


    介白素-12 (interleukin-12) 能誘導T細胞和NK細胞產生干擾素-γ,干擾素-γ (interferon-γ)則具抑制腫瘤生長與調節免疫的重要功能,二者均能調控細胞性免疫作用。在數種干擾素中,干擾素-γ之免疫調節能力優於其他干擾素,為目前重要的醫療用蛋白質藥物。通常量產農工業及或藥用等級重組蛋白質產品時,純化回收的程序繁複且成本甚高,因此發展高效能、低單價的蛋白質產品的製程為全球生技產業的關鍵實務需求。本篇研究的目標為發展高效率介白素-12及干擾素-γ的重組蛋白質生產、純化、及應用,本研究利用嗜甲醇酵母菌(Pichia pastoris)成功表現胺基端含米根黴菌葡萄糖水解酵素之澱粉吸附區域(Rhizopus oryzae starch-binding domain, RoSBD)及其酵素功能區連結片段(Rhizopus oryzae glucoamylase linker)之人類介白素-12 (AL*IL12)和干擾素-γ (AL*I)。重組蛋白質AL*IL12和AL*I的表現產量分別約為10 mg/L和30 mg/L,二者之澱粉吸附區域使其能利用澱粉吸附的方式快速純化。分析重組蛋白質AL*IL12和AL*I顯示二者之分子量、醣基化程度、及聚合體比例等生化特性、及IL-12和IFN-γ誘導下游基因表現的生物活性。本論文研究之具體貢獻為開發重組IL-12和IFN-γ蛋白質成為生技製藥領域中分子檢測及疾病治療應用之潛力標的。

    Acknowledgement........................................... I 中文摘要................................................. II Abstract................................................ III Table of Contents........................................ IV List of Figures......................................... VII List of Tables........................................... IX List of Appendix.......................................... X Abbreviations............................................ XI Chapter 1 Introduction...............................................1 Chapter 2 Materials and Methods..........................11 2.1 Strains and expression plasmids......................11 2.2 Culture media composition............................11 2.3 Plasmid constructs...................................12 2.4 Preparation of competent cells.......................13 2.5 Transformation of E. coli............................13 2.6 Confirmation of colonies by in situ PCR..............14 2.7 Mini-preparation of plasmid..........................14 2.8 Recovery of DNA fragment.............................15 2.9 Restriction enzyme digestion.........................15 2.10 Ligation............................................16 2.11 Yeast transformation................................16 2.12 Expression of SBD, SBD-eGFP, eGFP-SBD and SBD-IFNγ (AI) in E. coli...........................................17 2.13 Expression of AI, ALI, AL*I and AL*IL12 in P. pastoris..................................................18 2.14 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)...............................18 2.15 Western blotting....................................19 2.16 Effects of starch on SBD adsorption.................20 2.17 Determination of N-linked glycosylation.............20 2.18 Purification of AI, ALI, AL*I and AL*IL12 by amylose resin chromatography......................................21 2.19 Purification of AL*I and AL*IL12 by corn starch.....22 2.20 Enterokinase digestion..............................22 2.21 Bicinchoninic acid (BCA) assay for concentration determination.............................................22 2.22 Cross-linking analysis..............................23 2.23 Analytical ultracentrifugation......................23 2.24 Cell culture and treatment..........................24 2.25 RNA isolation and Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)...................................25 2.26 Gene expression analysis by Real-Time PCR...........26 2.27 Mass spectrometry determination.....................26 2.28 In-gel digestion and LC-MS/MS.......................26 Chapter 3 Results...................................................28 Part I. SBD 3.1.1 Expression and purification of SBD, SBD-eGFP, and eGFP-SBD in E. coli.......................................28 Part II. Interleukin-12 (IL-12) 3.1.2 Construction of pPICZαA-AL*IL12 and pAO815-AL*IL12 genes.....................................................29 3.1.3 Expression of AL*IL12 in P. pastoris GS115 and protein identification ...................................30 3.1.4 Glycoprotein analysis..............................31 3.1.5 Purification of SBD-tagged IL-12 fusion protein by amylose resin or corn starch..............................32 3.1.6 IFN-γ gene was up-regulated by AL*IL12 in CCRF-CEM cells.....................................................33 Part III. Interferon gamma (IFN-γ) 3.2.1 Construction of pET23a-AI, pPICZαA-AI, pPICZαA-ALI, pPICZαA-AL*I, pAO815-AI, pAO815-ALI, and pAO815-AL*I.... 35 3.2.2 Expression of SBD-IFNγ in E. coli................ 36 3.2.3 Expression of AI, ALI and AL*I in P. pastoris GS115.................................................... 37 3.2.4 Identification of SBD-IFNγ variants by SDS-PAGE and Western blot............................................. 37 3.2.5 Glycoprotein analysis............................. 39 3.2.6 Purification of SBD-tagged IFNγ fusion proteins by amylose resin or corn starch........................... ..41 3.2.7 Enterokinase digestion............................ 42 3.2.8 Functional analysis of recombinant IFN-γ......... 43 3.2.9 Evaluation of genes up-regulated by IFN-γ in Beas-2B cells................................................. 44 Chapter 4 Discussion............................................... 46 Publication list..................................................... 53 References............................................... 54 Figures.................................................. 64 Tables...................................................109 Appendix.................................................131

    1. Perussia B, Dayton ET, Fanning V, Thiagarajan P, Hoxie J & Trinchieri G (1983) Immune interferon and leukocyte-conditioned medium induce normal and leukemic myeloid cells to differentiate along the monocytic pathway. J Exp Med 158, 2058-2080.
    2. Young HA & Hardy KJ (1995) Role of interferon-gamma in immune cell regulation. J Leukoc Biol 58, 373-381.
    3. Halpern MD, Kurlander RJ & Pisetsky DS (1996) Bacterial DNA induces murine interferon-gamma production by stimulation of interleukin-12 and tumor necrosis factor-alpha. Cell Immunol 167, 72-78.
    4. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A & Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547-549.
    5. Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS, Culpepper JA, Wysocka M, Trinchieri G, Murphy KM & O'Garra A (1995) Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 154, 5071-5079.
    6. Reis e Sousa C, Hieny S, Scharton-Kersten T, Jankovic D, Charest H, Germain RN & Sher A (1997) In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med 186, 1819-1829.
    7. Snijders A, Hilkens CM, van der Pouw Kraan TC, Engel M, Aarden LA & Kapsenberg ML (1996) Regulation of bioactive IL-12 production in lipopolysaccharide-stimulated human monocytes is determined by the expression of the p35 subunit. J Immunol 156, 1207-1212.
    8. Chan SH, Kobayashi M, Santoli D, Perussia B & Trinchieri G (1992) Mechanisms of IFN-gamma induction by natural killer cell stimulatory factor (NKSF/IL-12). Role of transcription and mRNA stability in the synergistic interaction between NKSF and IL-2. J Immunol 148, 92-98.
    9. Seder RA, Gazzinelli R, Sher A & Paul WE (1993) Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A 90, 10188-10192.
    10. Smith DB & Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31-40.
    11. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, Ritz J, Sandler AB, Edington HD, Garzone PD, Mier JW, Canning CM, Battiato L, Tahara H & Sherman ML (1997) Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 3, 409-417.
    12. Peterson AC, Harlin H & Gajewski TF (2003) Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma. J Clin Oncol 21, 2342-2348.
    13. Romani L, Puccetti P & Bistoni F (1997) Interleukin-12 in infectious diseases. Clin Microbiol Rev 10, 611-636.
    14. Scott P (1993) IL-12: initiation cytokine for cell-mediated immunity. Science 260, 496-497.
    15. Podlaski FJ, Nanduri VB, Hulmes JD, Pan YC, Levin W, Danho W, Chizzonite R, Gately MK & Stern AS (1992) Molecular characterization of interleukin 12. Arch Biochem Biophys 294, 230-237.
    16. Yoon C, Johnston SC, Tang J, Stahl M, Tobin JF & Somers WS (2000) Charged residues dominate a unique interlocking topography in the heterodimeric cytokine interleukin-12. EMBO J 19, 3530-3541.
    17. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B & Trinchieri G (1989) Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 170, 827-845.
    18. Patterson RM, Selkirk JK & Merrick BA (1995) Baculovirus and insect cell gene expression: review of baculovirus biotechnology. Environ Health Perspect 103, 756-759.
    19. Belyaev AS & Roy P (1993) Development of baculovirus triple and quadruple expression vectors: co-expression of three or four bluetongue virus proteins and the synthesis of bluetongue virus-like particles in insect cells. Nucleic Acids Res 21, 1219-1223.
    20. Birnbaum MJ, Wu J, O'Reilly DR, Rivera-Marrero CA, Hanna DE, Miller LK & Glover CV (1992) Expression and purification of the alpha and beta subunits of Drosophila casein kinase II using a baculovirus vector. Protein Expr Purif 3, 142-150.
    21. Biron CA (2001) Interferons alpha and beta as immune regulators--a new look. Immunity 14, 661-664.
    22. Yang LM, Xue QH, Sun L, Zhu YP & Liu WJ (2007) Cloning and characterization of a novel feline IFN-omega. J Interferon Cytokine Res 27, 119-127.
    23. Rogez-Kreuz C, Maneglier B, Martin M, Dereuddre-Bosquet N, Martal J, Dormont D & Clayette P (2005) Involvement of IL-6 in the anti-human immunodeficiency virus activity of IFN-tau in human macrophages. Int Immunol 17, 1047-1057.
    24. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5, 375-386.
    25. Bertolotti-Ciarlet A, Ciarlet M, Crawford SE, Conner ME & Estes MK (2003) Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine 21, 3885-3900.
    26. Boehm U, Klamp T, Groot M & Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15, 749-795.
    27. Mamane Y, Heylbroeck C, Genin P, Algarte M, Servant MJ, LePage C, DeLuca C, Kwon H, Lin R & Hiscott J (1999) Interferon regulatory factors: the next generation. Gene 237, 1-14.
    28. Sen GC & Lengyel P (1992) The interferon system. A bird's eye view of its biochemistry. J Biol Chem 267, 5017-5020.
    29. Pelletier J & Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325.
    30. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G & Anichini A (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13, 4677-4685.
    31. Schroder K, Hertzog PJ, Ravasi T & Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75, 163-189.
    32. Anderson SL, Carton JM, Lou J, Xing L & Rubin BY (1999) Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology 256, 8-14.
    33. Cheng YS, Patterson CE & Staeheli P (1991) Interferon-induced guanylate-binding proteins lack an N(T)KXD consensus motif and bind GMP in addition to GDP and GTP. Mol Cell Biol 11, 4717-4725.
    34. Hisamatsu H, Shimbara N, Saito Y, Kristensen P, Hendil KB, Fujiwara T, Takahashi E, Tanahashi N, Tamura T, Ichihara A & Tanaka K (1996) Newly identified pair of proteasomal subunits regulated reciprocally by interferon gamma. J Exp Med 183, 1807-1816.
    35. Bange FC, Vogel U, Flohr T, Kiekenbeck M, Denecke B & Bottger EC (1994) IFP 35 is an interferon-induced leucine zipper protein that undergoes interferon-regulated cellular redistribution. J Biol Chem 269, 1091-1098.
    36. Pawliczak R, Logun C, Madara P, Barb J, Suffredini AF, Munson PJ, Danner RL & Shelhamer JH (2005) Influence of IFN-gamma on gene expression in normal human bronchial epithelial cells: modulation of IFN-gamma effects by dexamethasone. Physiol Genomics 23, 28-45.
    37. Ealick SE, Cook WJ, Vijay-Kumar S, Carson M, Nagabhushan TL, Trotta PP & Bugg CE (1991) Three-dimensional structure of recombinant human interferon-gamma. Science 252, 698-702.
    38. Walter MR, Windsor WT, Nagabhushan TL, Lundell DJ, Lunn CA, Zauodny PJ & Narula SK (1995) Crystal structure of a complex between interferon-gamma and its soluble high-affinity receptor. Nature 376, 230-235.
    39. Cregg JM, Cereghino JL, Shi J & Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16, 23-52.
    40. Macauley-Patrick S, Fazenda ML, McNeil B & Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22, 249-270.
    41. Cregg JM, Vedvick TS & Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (N Y) 11, 905-910.
    42. Hedhammar M & Hober S (2007) Z(basic)--a novel purification tag for efficient protein recovery. J Chromatogr A 1161, 22-28.
    43. Murphy MB & Doyle SA (2005) High-throughput purification of hexahistidine-tagged proteins expressed in E. coli. Methods Mol Biol 310, 123-130.
    44. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60, 523-533.
    45. Chou WI, Pai TW, Liu SH, Hsiung BK & Chang MD (2006) The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J 396, 469-477.
    46. Liu YN, Lai YT, Chou WI, Chang MD & Lyu PC (2007) Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J 403, 21-30.
    47. Tung JY, Chang MD, Chou WI, Liu YY, Yeh YH, Chang FY, Lin SC, Qiu ZL & Sun YJ (2008) Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J 416, 27-36.
    48. Lin SC, Lin IP, Chou WI, Hsieh CA, Liu SH, Huang RY, Sheu CC & Chang MD (2009) CBM21 starch-binding domain: a new purification tag for recombinant protein engineering. Protein Expr Purif 65, 261-266.
    49. Boraston AB, Bolam DN, Gilbert HJ & Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382, 769-781.
    50. Abe A, Tonozuka T, Sakano Y & Kamitori S (2004) Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J Mol Biol 335, 811-822.
    51. Abe A, Yoshida H, Tonozuka T, Sakano Y & Kamitori S (2005) Complexes of Thermoactinomyces vulgaris R-47 alpha-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with alpha-(1,6) glycosidic linkages. FEBS J 272, 6145-6153.
    52. Bibel M, Brettl C, Gosslar U, Kriegshauser G & Liebl W (1998) Isolation and analysis of genes for amylolytic enzymes of the hyperthermophilic bacterium Thermotoga maritima. FEMS Microbiol Lett 158, 9-15.
    53. Giraud E & Cuny G (1997) Molecular characterization of the alpha-amylase genes of Lactobacillus plantarum A6 and Lactobacillus amylovorus reveals an unusual 3' end structure with direct tandem repeats and suggests a common evolutionary origin. Gene 198, 149-157.
    54. Henrissat B & Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316 ( Pt 2), 695-696.
    55. Katsuragi N, Takizawa N & Murooka Y (1987) Entire nucleotide sequence of the pullulanase gene of Klebsiella aerogenes W70. J Bacteriol 169, 2301-2306.
    56. Lammerts van Bueren A, Finn R, Ausio J & Boraston AB (2004) Alpha-glucan recognition by a new family of carbohydrate-binding modules found primarily in bacterial pathogens. Biochemistry 43, 15633-15642.
    57. Mikami B, Iwamoto H, Malle D, Yoon HJ, Demirkan-Sarikaya E, Mezaki Y & Katsuya Y (2006) Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J Mol Biol 359, 690-707.
    58. Mikkelsen R, Suszkiewicz K & Blennow A (2006) A novel type carbohydrate-binding module identified in alpha-glucan, water dikinases is specific for regulated plastidial starch metabolism. Biochemistry 45, 4674-4682.
    59. Morlon-Guyot J, Mucciolo-Roux F, Rodriguez Sanoja R & Guyot JP (2001) Characterization of the L. manihotivorans alpha-amylase gene. DNA Seq 12, 27-37.
    60. Nitschke L, Heeger K, Bender H & Schulz GE (1990) Molecular cloning, nucleotide sequence and expression in Escherichia coli of the beta-cyclodextrin glycosyltransferase gene from Bacillus circulans strain no. 8. Appl Microbiol Biotechnol 33, 542-546.
    61. Oslancova A & Janecek S (2002) Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the alpha-amylase family defined by the fifth conserved sequence region. Cell Mol Life Sci 59, 1945-1959.
    62. Park KH, Kim TJ, Cheong TK, Kim JW, Oh BH & Svensson B (2000) Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. Biochim Biophys Acta 1478, 165-185.
    63. Parker GJ, Koay A, Gilbert-Wilson R, Waddington LJ & Stapleton D (2007) AMP-activated protein kinase does not associate with glycogen alpha-particles from rat liver. Biochem Biophys Res Commun 362, 811-815.
    64. Rodriguez-Sanoja R, Ruiz B, Guyot JP & Sanchez S (2005) Starch-binding domain affects catalysis in two Lactobacillus alpha-amylases. Appl Environ Microbiol 71, 297-302.
    65. Satoh E, Uchimura T, Kudo T & Komagata K (1997) Purification, characterization, and nucleotide sequence of an intracellular maltotriose-producing alpha-amylase from Streptococcus bovis 148. Appl Environ Microbiol 63, 4941-4944.
    66. Siggens KW (1987) Molecular cloning and characterization of the beta-amylase gene from Bacillus circulans. Mol Microbiol 1, 86-91.
    67. Sorimachi K, Le Gal-Coeffet MF, Williamson G, Archer DB & Williamson MP (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 5, 647-661.
    68. Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S & Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28, 4317-4331.
    69. Tonozuka T, Mogi S, Shimura Y, Ibuka A, Sakai H, Matsuzawa H, Sakano Y & Ohta T (1995) Comparison of primary structures and substrate specificities of two pullulan-hydrolyzing alpha-amylases, TVA I and TVA II, from Thermoactinomyces vulgaris R-47. Biochim Biophys Acta 1252, 35-42.
    70. Valdez HA, Busi MV, Wayllace NZ, Parisi G, Ugalde RA & Gomez-Casati DF (2008) Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Biochemistry 47, 3026-3032.
    71. Lin SC, Liu WT, Liu SH, Chou WI, Hsiung BK, Lin IP, Sheu CC & Dah-Tsyr Chang M (2007) Role of the linker region in the expression of Rhizopus oryzae glucoamylase. BMC Biochem 8, 9.
    72. Morrison DA (1977) Transformation in Escherichia coli: cryogenic preservation of competent cells. J Bacteriol 132, 349-351.
    73. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
    74. Rosenfeld J, Capdevielle J, Guillemot JC & Ferrara P (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203, 173-179.
    75. Cho KH, Auh JH, Kim JH, Ryu JH, Park KH, Park CS & Yoo SH (2009) Effect of Amylose Content in Corn Starch Modification by Thermus aquatiqus 4-alpha-Glucanotransferase. J Microbiol Biotechnol 19, 1201-1205.
    76. Halsall TG, Hirst EL & et al. (1948) The amylose of the starch present in the growing potato tuber. Biochem J 43, 70-72.
    77. Kataria A, Chauhan BM & Punia D (1992) Digestibility of proteins and starch (in vitro) of amphidiploids (black gram x mung bean) as affected by domestic processing and cooking. Plant Foods Hum Nutr 42, 117-125.
    78. Osundahunsi OF, Fagbemi TN, Kesselman E & Shimoni E (2003) Comparison of the physicochemical properties and pasting characteristics of flour and starch from red and white sweet potato cultivars. J Agric Food Chem 51, 2232-2236.
    79. Shi YC, Seib PA & Lu SP (1991) Leaching of amylose from wheat and corn starch. Adv Exp Med Biol 302, 667-686.
    80. Viswanathan PN & Krishnan PS (1965) Metabolic Activity of Starch Granules from the Tapioca Plant. I. Udpg-Starch-Glucosyl Transferase. Indian J Biochem 2, 16-21.
    81. Zhong F, Yokoyama W, Wang Q & Shoemaker CF (2006) Rice starch, amylopectin, and amylose: molecular weight and solubility in dimethyl sulfoxide-based solvents. J Agric Food Chem 54, 2320-2326.
    82. Huber SC & Israel DW (1982) Biochemical Basis for Partitioning of Photosynthetically Fixed Carbon between Starch and Sucrose in Soybean (Glycine max Merr.) Leaves. Plant Physiol 69, 691-696.
    83. Ko YT, Pan CH, Lee YT & Chang JY (2005) Detection of proteins related to starch synthase activity in the developing mungbean (Vigna radiata L.). J Agric Food Chem 53, 4805-4812.
    84. Khalilzadeh R, Shojaosadati SA, Maghsoudi N, Mohammadian-Mosaabadi J, Mohammadi MR, Bahrami A, Maleksabet N, Nassiri-Khalilli MA, Ebrahimi M & Naderimanesh H (2004) Process development for production of recombinant human interferon-gamma expressed in Escherichia coli. J Ind Microbiol Biotechnol 31, 63-69.
    85. Bretthauer RK (2003) Genetic engineering of Pichia pastoris to humanize N-glycosylation of proteins. Trends Biotechnol 21, 459-462.
    86. Duman JG, Miele RG, Liang H, Grella DK, Sim KL, Castellino FJ & Bretthauer RK (1998) O-Mannosylation of Pichia pastoris cellular and recombinant proteins. Biotechnol Appl Biochem 28 ( Pt 1), 39-45.
    87. Takatsuki A, Arima K & Tamura G (1971) Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J Antibiot (Tokyo) 24, 215-223.
    88. Lebowitz J, Lewis MS & Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11, 2067-2079.
    89. Ikeda H, Old LJ & Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13, 95-109.
    90. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM & Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264, 1918-1921.
    91. Rinderknecht E, O'Connor BH & Rodriguez H (1984) Natural human interferon-gamma. Complete amino acid sequence and determination of sites of glycosylation. J Biol Chem 259, 6790-6797.
    92. Roesler J, Kofink B, Wendisch J, Heyden S, Paul D, Friedrich W, Casanova JL, Leupold W, Gahr M & Rosen-Wolff A (1999) Listeria monocytogenes and recurrent mycobacterial infections in a child with complete interferon-gamma-receptor (IFNgammaR1) deficiency: mutational analysis and evaluation of therapeutic options. Exp Hematol 27, 1368-1374.
    93. Tannenbaum CS & Hamilton TA (2000) Immune-inflammatory mechanisms in IFNgamma-mediated anti-tumor activity. Semin Cancer Biol 10, 113-123.
    94. Schmitt E, Hoehn P, Huels C, Goedert S, Palm N, Rude E & Germann T (1994) T helper type 1 development of naive CD4+ T cells requires the coordinate action of interleukin-12 and interferon-gamma and is inhibited by transforming growth factor-beta. Eur J Immunol 24, 793-798.
    95. Lee P, Wang F, Kuniyoshi J, Rubio V, Stuges T, Groshen S, Gee C, Lau R, Jeffery G, Margolin K, Marty V & Weber J (2001) Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J Clin Oncol 19, 3836-3847.
    96. Ewald PW (1996) Guarding against the most dangerous emerging pathogens. Emerg Infect Dis 2, 245-257.
    97. Tenover FC & Hughes JM (1996) The challenges of emerging infectious diseases. Development and spread of multiply-resistant bacterial pathogens. JAMA 275, 300-304.
    98. Stahl CH, Wilson DB & Lei XG (2003) Comparison of extracellular Escherichia coli AppA phytases expressed in Streptomyces lividans and Pichia pastoris. Biotechnol Lett 25, 827-831.
    99. Xiong AS, Yao QH, Peng RH, Zhang Z, Xu F, Liu JG, Han PL & Chen JM (2006) High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol 72, 1039-1047.
    100. Sareneva T, Pirhonen J, Cantell K, Kalkkinen N & Julkunen I (1994) Role of N-glycosylation in the synthesis, dimerization and secretion of human interferon-gamma. Biochem J 303 ( Pt 3), 831-840.
    101. Ha SJ, Chang J, Song MK, Suh YS, Jin HT, Lee CH, Nam GH, Choi G, Choi KY, Lee SH, Kim WB & Sung YC (2002) Engineering N-glycosylation mutations in IL-12 enhances sustained cytotoxic T lymphocyte responses for DNA immunization. Nat Biotechnol 20, 381-386.
    102. Yeh P, Landais D, Lemaitre M, Maury I, Crenne JY, Becquart J, Murry-Brelier A, Boucher F, Montay G, Fleer R & et al. (1992) Design of yeast-secreted albumin derivatives for human therapy: biological and antiviral properties of a serum albumin-CD4 genetic conjugate. Proc Natl Acad Sci U S A 89, 1904-1908.
    103. Trimble RB, Atkinson PH, Tschopp JF, Townsend RR & Maley F (1991) Structure of oligosaccharides on Saccharomyces SUC2 invertase secreted by the methylotrophic yeast Pichia pastoris. J Biol Chem 266, 22807-22817.
    104. Bretthauer RK & Castellino FJ (1999) Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem 30 ( Pt 3), 193-200.
    105. Helenius A & Aebi M (2001) Intracellular functions of N-linked glycans. Science 291, 2364-2369.
    106. Arnau J, Lauritzen C, Petersen GE & Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48, 1-13.
    107. Jungbauer A (2006) About the cover: The Z basic protein tag. Biotechnol J 1, 113.
    108. Sachdev D & Chirgwin JM (2000) Fusions to maltose-binding protein: control of folding and solubility in protein purification. Methods Enzymol 326, 312-321.
    109. Srinivasan U & Bell JA (1998) A convenient method for affinity purification of maltose binding protein fusions. J Biotechnol 62, 163-167.
    110. Zhao HL, Xue C, Wang Y, Li XY, Xiong XH, Yao XQ & Liu ZM (2007) Circumventing the heterogeneity and instability of human serum albumin-interferon-alpha2b fusion protein by altering its orientation. J Biotechnol 131, 245-252.
    111. Arakawa T, Hsu YR, Parker CG & Lai PH (1986) Role of polycationic C-terminal portion in the structure and activity of recombinant human interferon-gamma. J Biol Chem 261, 8534-8539.
    112. Leinikki PO, Calderon J, Luquette MH & Schreiber RD (1987) Reduced receptor binding by a human interferon-gamma fragment lacking 11 carboxyl-terminal amino acids. J Immunol 139, 3360-3366.
    113. Seelig GF, Wijdenes J, Nagabhushan TL & Trotta PP (1988) Evidence for a polypeptide segment at the carboxyl terminus of recombinant human gamma interferon involved in expression of biological activity. Biochemistry 27, 1981-1987.
    114. Johnson HM, Langford MP, Lakhchaura B, Chan TS & Stanton GJ (1982) Neutralization of native human gamma interferon (HuIFN gamma) by antibodies to a synthetic peptide encoded by the 5' end of HuIFN gamma cDNA. J Immunol 129, 2357-2359.
    115. Langford MP, Gray PW, Stanton GJ, Lakhchaura B, Chan TS & Johnson HM (1983) Antibodies to a synthetic peptide corresponding to the N-terminal end of mouse gamma interferon (IFN gamma). Biochem Biophys Res Commun 117, 866-871.
    116. Magazine HI, Carter JM, Russell JK, Torres BA, Dunn BM & Johnson HM (1988) Use of synthetic peptides to identify an N-terminal epitope on mouse gamma interferon that may be involved in function. Proc Natl Acad Sci U S A 85, 1237-1241.
    117. Saul R, Chambers JP, Molyneux RJ & Elbein AD (1983) Castanospermine, a tetrahydroxylated alkaloid that inhibits beta-glucosidase and beta-glucocerebrosidase. Arch Biochem Biophys 221, 593-597.
    118. Saunier B, Kilker RD, Jr., Tkacz JS, Quaroni A & Herscovics A (1982) Inhibition of N-linked complex oligosaccharide formation by 1-deoxynojirimycin, an inhibitor of processing glucosidases. J Biol Chem 257, 14155-14161.
    119. Datema R, Romero PA, Legler G & Schwarz RT (1982) Inhibition of formation of complex oligosaccharides by the glucosidase inhibitor bromoconduritol. Proc Natl Acad Sci U S A 79, 6787-6791.
    120. Bischoff J, Liscum L & Kornfeld R (1986) The use of 1-deoxymannojirimycin to evaluate the role of various alpha-mannosidases in oligosaccharide processing in intact cells. J Biol Chem 261, 4766-4774.
    121. Elbein AD, Solf R, Dorling PR & Vosbeck K (1981) Swainsonine: an inhibitor of glycoprotein processing. Proc Natl Acad Sci U S A 78, 7393-7397.
    122. Fairman R, Fenderson W, Hail ME, Wu Y & Shaw SY (1999) Molecular weights of CTLA-4 and CD80 by sedimentation equilibrium ultracentrifugation. Anal Biochem 270, 286-295.
    123. Halsall TG, Hirst EL, Jones JK & Sansome FW (1948) The amylose content of the starch present in the growing potato tuber. Biochem J 43, 70-72.
    124. Kuakpetoon D & Wang YJ (2006) Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydr Res 341, 1896-1915.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE