研究生: |
楊雅筑 Yang, Ya-Chu |
---|---|
論文名稱: |
Ti變量對TixFeCoNi合金氧化物薄膜的微結構、電阻及磁性的影響 Ti-content effects on the microstructures, resistivity and magnetism of TixFeCoNi alloy oxide thin films |
指導教授: |
葉均蔚
Yeh, Jien-Wei 曹春暉 Tsau, Chun-Huei |
口試委員: |
洪健龍
Hong, Jian-Long 李勝隆 Lee, Sheng-Long 李英杰 Lee, Ying-Chieh 蔡哲瑋 Tsai, Che-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 170 |
中文關鍵詞: | 導電特性 、軟磁 、氧化 、退火 、薄膜 |
外文關鍵詞: | Electrical property, Soft magnetic, Oxidation, Annealing, Thin Films |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是以Ti做變量,接著與Fe、Co、Ni三種等莫耳比例之元素製成TixFeCoNi (x = 0, 0.5, 1.0)合金靶材。其次,藉由真空直流磁控濺鍍機來製備薄膜,並依不同熱處理條件及氧氣氛以探討其對於薄膜微結構及其電性與磁性質的影響。由於TiFeCoNi氧化物薄膜具有非常低的電阻,其為35 μΩ-cm,為了解電阻與微結構的關聯,本研究分為兩部分,第一部分在探討TixFeCoNi薄膜在高溫1000°C退火後的微結構分層變化,並從熱力學探討此分層現象與電性及磁性的關聯;第二部分為透過通以不同流率的氧氣氛下,期望透過改變製程能在低溫狀態下鍍製具低電阻的缺氧氧化物,並探討其退火前後的微結構、電性及磁性的變化。
本論文共分為六章:第一章為簡介研究背景與動機,包含TiFeCoNi薄膜的基本結構、電性優點及挑戰等;第二章則為文獻回故與理論基礎,例如高熵合金薄膜的研究與發展、薄膜的導電及磁性理論;第三章為實驗步驟及分析方法,詳細地描述薄膜微結構及性質分析,其中微結構分析包括以X光繞射、掃瞄式電子顯微鏡與穿透式電子顯微鏡作微結構觀察,電性分析包括以四點探針法及Hall effect量測,而磁性分析是利用振動樣品磁力計量測;第四及第五章中將分別針對不同實驗製程並討論其分析結果與理論的論證,而第四章的製程是以薄膜在無通任何反應氣氛、偏壓及溫度下,探討薄膜在1000°C-30 min高溫真空退火製程的微結構及性質變化,而在第五章的製程是以薄膜在無偏壓及無升溫下,通以不同氧氣氛流率,接著探討薄膜在低溫400°C- 1 h的高真空快速升溫退火爐製程中的微結構及性質變化。最後,第六章總結了這本研究的發現及主要貢獻,首先闡明了高溫退火對加速薄膜內原子的擴散並造成分層的現象。由於金屬+氧化物的複合結構正是形成低電阻的主要因素,因此,當薄膜通以不同氧流率時,薄膜形成均勻的氧化層,由於氧含量過高,因此其電阻不如預期的低,但卻發現退火後,薄膜具有約1100 ~ 2200 emu/cm3的飽和磁化量(相當於1.4 ~ 2.8 Tesla),而此發現亦是本研究最大的貢獻。
In this paper, TixFeCoNi (x = 0, 0.5, 1.0) alloy targets were prepared by an arc melter, and Ti element was designed as a variable. The alloy films were prepared by a vacuum DC magnetron sputtering. The influence of the microstructures on the electrical properties and magnetic properties were investigated under different heat treatment conditions and oxygen atmosphere. The microstructures of the TixFeCoNi films after annealing at high temperature of 1000°C was studied to understand the relationship between the resistance and the microstructure of TiFeCoNi oxide film which had a very low resistance of 35 μΩ-cm, also the thermodynamics of this stratification phenomenon and electrical and magnetic correlation were discussed. Second, the TixFeCoNi oxide films were made in situ though an oxygen atmosphere under different oxygen flow rate, also the microstructure, electrical and magnetic properties of the anoxic oxide were investigated. This method could improve the application of these thin films and reduce the cost of production.
This paper is divided into six chapters: Chapter 1 is introduction which describes the research background and motivation, including the basic structure of TiFeCoNi film, electrical advantages and challenges. Chapter 2 is literature and theoretical basis, such as high entropy alloy film research and development, film conductivity and magnetic theory. Chapter 3 is experimental steps and analytical methods, detailed describes the analysis methods of the microstructures and properties of the thin films, such as X-ray diffraction, scanning electron microscope and transmission electron microscope, electrical analysis, including four-point probe method and Hall effect measurement, and magnetic analysis is the use of vibration sample magnetic measurement. Chapter 4 discusses the annealing effects on the microstructures and properties on the TixFeCoNi alloy films. Chapter 5 studies the method to directly produce Ti0.5FeCoNi oxide films though an oxygen atmosphere, and also their properties. The films were deposited under different oxygen flow rates, without bias and no temperature-controlled, followed by annealing at a high vacuum and rapid annealing furnace at low temperature of 400 °C-1 h. Finally, Chapter 6 summarizes the findings and main contributions of this study. First, the mixed structures of a metal and oxide were the main factor to form a low resistivity. When the films were annealed at high temperature, the diffusion rate of atoms caused the stratification in films. Second, when the films were deposited with a different oxygen flow rates, the films were formed a uniform oxide layer. The resistivity of the films was not as low as expected due to the high oxygen contents. But the film had a saturation magnetization of about 1100 to 2200 emu / cm3 (Equivalent to 1.4 ~ 2.8 Tesla) was observed, and this discovery is also the biggest contribution of this study.
1. C.H. Tsau, Phase transformation and mechanical behavior of TiFeCoNi alloy during annealing. Materials Science and Engineering: A, 2009. 501(1–2): p. 81-86.
2. 楊雅筑, “TiFeCoNi 合金薄膜微結構及導電性質之研究”,文化大學材料科學與奈米科技研究所碩士論文材料科學與奈米科技研究所碩士論文,2007.
3. Y.C. Yang, C.H. Tsau, and J.W. Yeh, TiFeCoNi oxide thin film - A new composition with extremely low electrical resistivity at room temperature. Scripta Materialia, 2011. 64(2): p. 173-176.
4. G.H. Dong, G. Dong, G. Tan, Y. Luo, W. Liu, H. Ren, andA. Xia, Influence of multi-element co-doping on structure and multiferroic properties of BiFeO3 thin films. Materials Letters, 2014. 136: p. 314-317.
5. R. Ramesh, Thin film ferroelectric materials and devices. Vol. 3. 2013: Springer Science & Business Media.
6. C.H. Tsau, Z.Y. Hwang, and S.K. Chen, The Microstructures and Electrical Resistivity of (Al, Cr, Ti)FeCoNiOx High-Entropy Alloy Oxide Thin Films. Advances in Materials Science and Engineering, 2015: p. 1-6.
7. B.Y. Zong, Z.W. Pong, Y.P. Wu, P. Ho, J.J. Qiu, L.B. Kong, L. Wang, and G.C. Han, Electrodeposition of granular FeCoNi films with large permeability for microwave applications. Journal of Materials Chemistry, 2011. 21(40): p. 16042-16048.
8. D. Hunter, W. Osborn, K. Wang, N. Kazantseva, J. Hattrick-Simpers, R. Suchoski, R. Takahashi, M. L Young, A. Mehta, and L. A Bendersky, Giant magnetostriction in annealed Co1-xFex thin-films. Nature communications, 2011. 2: p. 518.
9. Y.T. Chen, J.Y. Tseng, T.S. Sheu, Y.C. Lin, and S.H. Lin, Effect of grain size on magnetic properties and microstructure of Ni80Fe20 thin films. Thin Solid Films, 2013. 544: p. 602-605.
10. X. Li, K. W. Lin, H.Y. Liu, D.H. Wei, G.J. Li, and P.W.T. Pong, Effect of field cooling process and ion-beam bombardment on the exchange bias of NiCo/(Ni, Co)O bilayers. Thin Solid Films, 2014. 570: p. 383-389.
11. X. Zhong, W.T. Soh, N.N. Phuoc, Y.Liu, and C.K. Ong, Multiple resonance peaks of FeCo thin films with NiFe underlayer. Journal of Applied Physics, 2015. 117(1): p. 013906.
12. C.L. Platt, N. Minor, and T.J. Klemmer, Magnetic and structural properties of FeCoB thin films. IEEE transactions on magnetics, 2001. 37(4): p. 2302-2304.
13. Y.W. Peng, F.B. Wu, S. Li, C.L. Kuo, and J.G. Duh, Fabrication and high frequency magnetic characterization of FeCoAl ternary thin films. physica status solidi (a), 2007. 204(12): p. 4129-4132.
14. H. Brunken, C. Somsen, A. Savan, and A. Ludwig, Microstructure and magnetic properties of FeCo/Ti thin film multilayers annealed in nitrogen. Thin Solid Films, 2010. 519(2): p. 770-774.
15. S. Mehrizi, M.H. Sohi, and S.S. Ebrahimi, Study of microstructure and magnetic properties of electrodeposited nanocrystalline CoFeNiCu thin films. Surface and Coatings Technology, 2011. 205(20): p. 4757-4763.
16. G.J. Chen, S.R. Jian, J.S.C. Jang, Y.H. Shih, Y.T. Chen, S.U. Jen, and J.Y. Juang, The effects of annealing temperature and sputtering power on the structure and magnetic properties of the Co-Fe-Zr-B thin films. Intermetallics, 2012. 30: p. 127-131.
17. H. Feng, J. Wei, Z. Zhu, D. Cao, Q. Liu, and J. Wang, Preparation and influence of pH on the dynamic magnetic property of magnetic FeCoC films. Materials Chemistry and Physics, 2016. 177: p. 236-241.
18. N.H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, and F. Gervais, Ferromagnetism in transition-metal-doped TiO2 thin films. Physical Review B, 2004. 70(19): p. 195204.
19. N.H. Hong, A. Ruyter, F. Gervais, W. Prellier, and J. Sakai, Magnetic structure of V: TiO2 and Cr: TiO2 thin films from magnetic force microscopy measurements. Journal of applied physics, 2005. 97(10): p. 10D323.
20. S. Duhalde, C.R. Torres, M.F. Vignolo, F.Golmar, C. Chillote, A.F. Cabrera, and F.H. Sánchez, Ferromagnetism in doped TiO2 thin films prepared by PLD. Journal of Physics: Conference Series, IOP Publishing 2007. 59(1): p. 479.
21. C.R. Torres, F. Golmar, A.F. Cabrera, L. Errico, A.M. Navarro, M. Renteria, F.H. Sánchez, and S. Duhalde, Magnetic and structural study of Cu-doped TiO2 thin films. Applied Surface Science, 2007. 254(1): p. 365-367.
22. V. Pore, M. Dimri, H. Khanduri, R. Stern, J. Lu, L. Hultman, K. Kukli, M. Ritala, and M. Leskelä, Atomic layer deposition of ferromagnetic cobalt doped titanium oxide thin films. Thin Solid Films, 2011. 519(10): p. 3318-3324.
23. N. Nasralla, M. Yeganeh, Y. Astuti, S. Piticharoenphun, N. Shahtahmasebi, A. Kompany, M. Karimipour, B.G. Mendis, N.R.J. Poolton, and L. Šiller, Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method. Scientia Iranica, 2013. 20(3): p. 1018-1022.
24. P. Mohanty, D. Kabiraj, R.K. Mandal, P.K. Kulriya, A.S.K. Sinha, and C. Rath, Evidence of room temperature ferromagnetism in argon/oxygen annealed TiO2 thin films deposited by electron beam evaporation technique. Journal of Magnetism and Magnetic Materials, 2014. 355: p. 240-245.
25. C.F. Yu, S.J. Sun, and J.M. Chen, Magnetic and electrical properties of TiO2: Nb thin films. Applied Surface Science, 2014. 292: p. 773-776.
26. G. Herzer, Nanocrystalline soft magnetic materials. Journal of Magnetism and Magnetic Materials, 1992. 112(1-3): p. 258-262.
27. S. Ohnuma, N. Kobayashi, T. Masumoto, S. Mitani, and H. Fujimori, Magnetostriction and soft magnetic properties of (Co1− xFex)–Al–O granular films with high electrical resistivity. Journal of applied physics, 1999. 85(8): p. 4574-4576.
28. N.N. Phuoc, L.T. Hung, and C. Ong, FeCoHfN thin films fabricated by co-sputtering with high resonance frequency. Journal of Alloys and Compounds, 2011. 509(9): p. 4010-4013.
29. Y. Wang, H. Zhang, L. Wang, Z. Zhong, and F. Bai, Nanogranular (FeCoTiO/SiO2)n multilayered films for noise suppressor. IEEE Transactions on Magnetics, 2014. 50(11): p. 1-4.
30. F. Huang, M.T. Kief, G.J. Mankey, and R.F. Willis, Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu (100) and Cu (111). Physical Review B, 1994. 49(6): p. 3962.
31. G. Chen, C. Song, C. Chen, S. Gao, F. Zeng, and F. Pan, Resistive Switching and Magnetic Modulation in Cobalt‐Doped ZnO. Advanced Materials, 2012. 24(26): p. 3515-3520.
32. Y. Zhang, T. Zuo, Y. Cheng, and P. K. Liaw, High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability. Scientific Reports, 2013. 3.
33. S. Bhukal, T. Namgyal, S. Mor, S. Bansal, and S. Singhal, Structural, electrical, optical and magnetic properties of chromium substituted Co–Zn nanoferrites Co0.6Zn0.4CrxFe2-xO4 (0 ⩽ x ⩽ 1.0) prepared via sol–gel auto-combustion method. Journal of Molecular Structure, 2012. 1012: p. 162-167.
34. G. Herzer, Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Transactions on Magnetics, 1989. 25(5): p. 3327-3329.
35. G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Transactions on Magnetics, 1990. 26(5): p. 1397-1402.
36. 黃國雄,”等莫耳比多元合金系統之研究”,國立清華大學材料科學工程研究所碩士論文,1996.
37. 賴高廷,”高亂度合金微結構及性質探討”,國立清華大學材料科學工程研究所碩士論文,1998.
38. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
39. X. Lim, Metal Mixology. Nature, 2016. 533(7603): p. 306-307.
40. M. H. Tsai, C. W. Wang, C. W. Tsai, W. J. Shen, J. W. Yeh, J. Y. Gan, and W. W. Wu, Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization. Journal of the Electrochemical Society, 2011. 158(11): p. H1161-H1165.
41. C.Y. Cheng and J.W. Yeh, High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties. Materials Letters, 2016. 185: p. 456-459.
42. W.J. Shen, M.H. Tsai, and J.W. Yeh, Machining Performance of Sputter-Deposited (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-Entropy Nitride Coatings. Coatings, 2015. 5(3): p. 312-325.
43. P.C. Lin, C.Y. Cheng, J.W. Yeh, and T.S. Chin, Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films. Entropy, 2016. 18(8): p. 308.
44. H.T. Hsueh, W.J. Shen, M.H. Tsai, and J.W. Yeh, Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx. Surface and Coatings Technology, 2012. 206(19–20): p. 4106-4112.
45. V. Braic, M. Balaceanu, M. Braic, A. Vladescu, S. Panseri, and A. Russo, Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2012. 10: p. 197-205.
46. 王德平, 姚., 叶松,贺蕴秋, 无机材料结构与性能.同济大学出版社. 2015: p.134-161.
47. 姜辛, et al., 透明导电氧化物薄膜. 2008. p.201-211.
48. E. Sondheimer, The mean free path of electrons in metals. Advances in Physics, 2001. 50(6): p. 499-537.
49. A. Mayadas and M. Shatzkes, Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Physical review B, 1970. 1(4): p. 1382.
50. C. Tellier, A theoretical description of grain boundary electron scattering by an effective mean free path. Thin Solid Films, 1978. 51(3): p. 311-317.
51. R.L. Petritz, Theory of photoconductivity in semiconductor films. Physical Review, 1956. 104(6): p. 1508.
52. M. Mizuhashi, Electrical properties of vacuum-deposited indium oxide and indium tin oxide films. Thin Solid Films, 1980. 70(1): p. 91-100.
53. A. Roth and D. Williams, Properties of zinc oxide films prepared by the oxidation of diethyl zinc. Journal of Applied Physics, 1981. 52(11): p. 6685-6692.
54. R. Ghosh, G.K. Paul, and D. Basak, Effect of thermal annealing treatment on structural, electrical and optical properties of transparent sol–gel ZnO thin films. Materials Research Bulletin, 2005. 40(11): p. 1905-1914.
55. J.C. Lou, M.S. Lin, J.I. Chyi, and J.H. Shieh, Process study of chemically vapour-deposited SnOx (x ≈ 2) films. Thin solid films, 1983. 106(3): p. 163-173.
56. H.D. Young, et al., Sears and Zemansky's university physics. 2016, Pearson.
57. 材料的磁性分類及其產生機制. Available from: http://www.guokr.com/question/396720/?answer=574546#answer574546.
58. R. Singh, Unexpected magnetism in nanomaterials. Journal of Magnetism and Magnetic Materials, 2013. 346: p. 58-73.
59. B. Bechlars, D.M. D'alessandro, D.M. Jenkins, A.T. Iavarone, S.D. Glover, C.P. Kubiak, and J.R. Long, High-spin ground states via electron delocalization in mixed-valence imidazolate-bridged divanadium complexes. Nature Chemistry, 2010. 2(5): p. 362-368.
60. Kasap, S.O., Principles of electronic materials and devices. 2006: McGraw-Hill.
61. M. Ali, Growth and study of magnetostrictive FeSiBC thin films, for device applications, in Department of PHysics & Astronomy. 1999, The University of Sheffield. p. 94.
62. C. Robert and O. Handley, Modern magnetic materials: principles and applications. 2000, Wiley, New York.
63. Martin, P.M., Handbook of deposition technologies for films and coatings: science, applications and technology. William Andrew. 2009: chapter 5.
64. X. Zhang, A. Cuevas, and A. Thomson. Process control of reactive sputter deposition of AlOx and improved surface passivation of crystalline silicon. in Photovoltaic Specialists Conference (PVSC), Volume 2, 2012 IEEE 38th. 2012. IEEE.
65. J.A. Venables, G. Spiller, and M. Hanbucken, Nucleation and growth of thin films. Reports on Progress in Physics, 1984. 47(4): p. 399.
66. J.E. Greene, Chapter 12 - Thin Film Nucleation, Growth, and Microstructural Evolution: An Atomic Scale View A2 - Martin, Peter M, in Handbook of Deposition Technologies for Films and Coatings (Third Edition). 2010, William Andrew Publishing: Boston. p. 554-620.
67. D.J. Srolovitz, Grain-Growth Phenomena in Films - a Monte-Carlo Approach. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1986. 4(6): p. 2925-2931.
68. R. Messier, A. Giri, and R. Roy, Revised structure zone model for thin film physical structure. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984. 2(2): p. 500-503.
69. S. Mahieu, et al., Biaxial alignment in sputter deposited thin films. Thin Solid Films, 2006. 515(4): p. 1229-1249.
70. J.A. Thornton, High rate thick film growth. Annual review of materials science, 1977. 7(1): p. 239-260.
71. C. Charpentier, et al., X-Ray diffraction and Raman spectroscopy for a better understanding of ZnO: Al growth process. EPJ Photovoltaics, 2011. 2: p. 25002.
72. J.A. Thornton, Structure-zone models of thin films. In Proc. SPIE. 1988. 821: p. 95-103.
73. D. Depla, S. Mahieu, and J.E. Greene, Chapter 5 - Sputter Deposition Processes A2 - Martin, Peter M, in Handbook of Deposition Technologies for Films and Coatings (Third Edition). 2010, William Andrew Publishing: Boston. p. 253-296.
74. N. Kaiser, Review of the fundamentals of thin-film growth. Applied optics, 2002. 41(16): p. 3053-3060.
75. P.B. Barna and M. Adamik, Growth mechanisms of polycrystalline thin films. Science and technology of thin films, 1995: p. 1-28.
76. 吳律頤, “Ti 含量對 TixFeCoNi 合金薄膜微結構及導電性質之影響”, 文化大學材料科學與奈米科技研究所碩士論文,2010.
77. 林勁佑,”溫度對 TixFeCoNiOy 薄膜電阻率之影響”, 文化大學材料科學與奈米科技研究所碩士論文,2013.
78. 范馨壬,”TixFeCoNi 合金氧化物薄膜光導性之研究”,文化大學材料科學與奈米科技研究所碩士論文. 2010.
79. 李成哲, “TiFeCoNiCux合金薄膜微結構及導電性質之研究”,文化大學材料科學與奈米科技研究所碩士論文,2008.
80. K. Sumiyama, H. Ezawa, and Y. Nakamura, Metastable Fe1−xTix alloys produced by vapor quenching. Physica status solidi (a), 1986. 93(1): p. 81-86.
81. S. W. Kao, Y. L. Chen, T. S. Chin, and J. W. Yeh, A preliminary molecular dynamics simulation on equiatomic alloys with up to six elements. Annales De Chimie-Science Des Materiaux, 2006. 31(6): p. 657-668.
82. S.W. Kao,, J.W. Yeh, and T.S. Chin, Rapidly solidified structure of alloys with up to eight equal-molar elements—a simulation by molecular dynamics. Journal of Physics: Condensed Matter, 2008. 20(14): p. 145214.
83. Jacobs, J.A. and T.F. Kilduff, Engineering Materials Technology: Structures, Processing, Properties, and Selection. New Jersey, U.S.A.: Prentice Hall. 2001: p. 708-709.
84. J. Musil, Flexible hard nanocomposite coatings. RSC Advances, 2015. 5(74): p. 60482-60495.
85. J. Musil, Low-pressure magnetron sputtering. Vacuum, 1998. 50(3): p. 363-372.
86. J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science & Technology, 1974. 11(4): p. 666-670.
87. F.R. De Boer, et al., Cohesion in metals: Transition Metal Alloys. Vol. 1. 1988: New York : North-Holland, U.S.A.
88. C.T. Lynch, CRC Handbook of Materials Science: Material Composites and Refractory Materials. Vol. 2. CRC press. 1975: p. 339-352.
89. Y.A. Shevchuk, Interdiffusion in the β Phases of the Ti–Ni and Ti–Fe Systems. Inorganic materials, 2004. 40(4): p. 376-379.
90. W.F. Gale and TC Totemeier, Smithells metals reference book. Butterworth-Heinemann, 2003. 13, p. 1-120.
91. M. Koiwa, Diffusion in Materials—History and Recent Developments. Materials Transactions, JIM, 1998. 39(12): p. 1169-1179.
92. G. Cacciamani, et al., Critical evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti alloy systems. Intermetallics, 2006. 14(10): p. 1312-1325.
93. R.S. Yu, et al., Structure and optoelectronic properties of multi-element oxide thin film. Applied Surface Science, 2011. 257(14): p. 6073-6078.
94. M.I. Lin, et al., Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Thin Solid Films, 2010. 518(10): p. 2732-2737.
95. Y. Chen, et al., Interdiffusion in FCC Co-Al-Ti Ternary Alloys. Journal of Phase Equilibria and Diffusion, 2015. 36(2): p. 127-135.
96. G.M. Kale and K.T. Jacob, Chemical-Potential of Oxygen for Iron-Rutile-Ilmenite and Iron-Ilmenite-Ulvospinel Equilibria. Metallurgical Transactions B-Process Metallurgy, 1992. 23(1): p. 57-64.
97. Y.A. Shevchuk, Interdiffusion in the beta phases of the Ti-Ni and Ti-Fe systems. Inorganic Materials, 2004. 40(4): p. 376-379.
98. V.O. Vaskovskij, V.N. Lepalovskij, and N.N. Schegoleva, Phase-Transformations, Magnetic and Magnetoresistive Properties of FeCoNi-N Thin-Films. Journal of Alloys and Compounds, 1995. 228(2): p. 155-158.
99. A. Bally, et al., Mechanical and electrical properties of fcc TiO1+x thin films prepared by rf reactive sputtering. Surface and Coatings Technology, 1998. 108: p. 166-170.
100. W.D. Ryden and A.W. Lawson, Electrical Transport Properties of IrO2 and RuO2. Physical Review B, 1970. 1(4): p. 1494-1500.
101. J.C. Owrutsky, et al., The effect of disorder on the optical constants of nanoscale RuO2. Thin Solid Films, 2015. 589: p. 344-350.
102. A. Chaoumead, et al., Structural and electrical properties of sputtering power and gas pressure on Ti-dope In2O3 transparent conductive films by RF magnetron sputtering. Applied Surface Science, 2013. 275: p. 227-232.
103. A. Ryzhikov, et al., Microstructure and electrophysical properties of SnO2, ZnO and In2O3 nanocrystalline films prepared by reactive magnetron sputtering. Materials Science and Engineering: B, 2002. 96(3): p. 268-274.
104. H. Qin, H. Liu, and Y. Yuan, Si doped ZnO thin films for transparent conducting oxides. Surface Engineering, 2013. 29(1): p. 70-76.
105. J. Yan, et al., Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level. Nanoscale, 2016. 8(32): p. 15001-15007.
106. N.S. McIntyre and M.G. Cook, X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Analytical chemistry, 1975. 47(13): p. 2208-2213.
107. B. Bharti, et al., Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Scientific reports, 2016. 6.
108. Z. Zhou, et al., Electronic structure studies of the spinel CoFe2O4 by X-ray photoelectron spectroscopy. Applied Surface Science, 2008. 254(21): p. 6972-6975.
109. M.C. Asensio, et al., The growth of thin Ti and TiOx films on Pt(111): Morphology and oxidation states. Surface Science, 1992. 273(1): p. 31-39.
110. A.R. González-Elipe, et al., Compositional changes induced by 3.5 keV Ar+ ion bombardment in Ni-Ti oxide systems. Surface Science, 1989. 220(2): p. 368-380.
111. B. Abdallaha, O. Mradb, and I.M. Ismailb, Characterization of TiAlV Films Prepared by Vacuum Arc Deposition: E ect of Substrate Temperature. 2013. 123(1) : p. 76-79.
112. X. Lai, et al., Synthesis and characterization of titania films on Mo (110). Surface science, 2001. 487(1): p. 1-8.
113. J. Matharu, G. Cabailh, and G. Thornton, Synthesis of TiO2 (110) ultra-thin films on W (100) and their reactions with H2O. Surface Science, 2013. 616: p. 198-205.
114. C.T. Wang and S.H. Ro, Nanoparticle iron–titanium oxide aerogels. Materials Chemistry and Physics, 2007. 101(1): p. 41-48.
115. R. Gouttebaron, et al., XPS study of TiOx thin films prepared by dc magnetron sputtering in Ar–O2 gas mixtures. Surface and interface analysis, 2000. 30(1): p. 527-530.
116. I. Oja Acik, et al., Characterisation of samarium and nitrogen co-doped TiO2 films prepared by chemical spray pyrolysis. Applied Surface Science, 2012. 261: p. 735-741.
117. A. Grosvenor, et al., Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 2004. 36(12): p. 1564-1574.
118. T. Sönmez, et al., Role of different plasma gases on the surface chemistry and wettability of RF plasma treated stainless steel. Vacuum, 2016. 129: p. 63-73.
119. S. Tiwari, et al., Effect of oxygen partial pressure and Fe doping on growth and properties of metallic and insulating molybdenum oxide thin films. Journal of Applied Physics, 2012. 111(8): p. 083905.
120. P. Marcus and J. Grimal, The anodic dissolution and passivation of NiCrFe alloys studied by ESCA. Corrosion Science, 1992. 33(5): p. 805-814.
121. T. Yamashita and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008. 254(8): p. 2441-2449.
122. K. Kishi, Adsorption of ethylenediamine on clean and oxygen covered Fe/Ni (100) surfaces studied by XPS. Journal of Electron Spectroscopy and Related Phenomena, 1988. 46(1): p. 237-247.
123. F.A. Harraz, et al., Magnetic nanocomposite based on titania–silica/cobalt ferrite for photocatalytic degradation of methylene blue dye. Ceramics International, 2014. 40(1): p. 375-384.
124. T. Fujii, et al., In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Physical review B, 1999. 59(4): p. 3195.
125. C.C. Wang, et al., Role of cobalt in room-temperature ferromagnetic Co-doped ZnO thin films. AIP Advances, 2012. 2(1): p. 012182.
126. K. Müller, et al., NiO-MgO and CoO-MgO Thin-Film Solid Oxide Solutions on a Mo (100) Support: Formation, Reduction, and Influence of the Support. The Journal of Physical Chemistry C, 2012. 117(1): p. 280-287.
127. J.G. Li, et al., Cobalt-doped TiO2 nanocrystallites: radio-frequency thermal plasma processing, phase structure, and magnetic properties. The Journal of Physical Chemistry C, 2009. 113(19): p. 8009-8015.
128. M.C. Biesinger, et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011. 257(7): p. 2717-2730.
129. H. Liu, et al., Comparative study of room temperature ferromagnetism in Cu, Co codoped ZnO film enhanced by hybridization. Ceramics International, 2015. 41(3): p. 3613-3617.
130. J.F. Marco, et al., Characterization of the spinel-related oxides NixCo3-xO4 (x = 0.3,1.3,1.8) prepared by spray pyrolysis at 350 °C. Applied Surface Science, 2004. 227(1): p. 175-186.
131. J. Liu, et al., A high-efficient amperometric hydrazine sensor based on novel electrospun CoFe2O4 spinel nanofibers. Chinese Chemical Letters, 2015. 26(12): p. 1478-1484.
132. I. Diaz, et al., Study of overall and local electrochemical responses of oxide films grown on CoCr alloy under biological environments. Bioelectrochemistry, 2017. 115: p. 1-10.
133. S. Wang, et al., Valence control of cobalt oxide thin films by annealing atmosphere. Applied Surface Science, 2011. 257(8): p. 3358-3362.
134. S. Khorsand, et al., Relationship between the structure and water repellency of nickel–cobalt alloy coatings prepared by electrodeposition process. Surface and Coatings Technology, 2015. 276: p. 296-304.
135. C.S. Chua, et al., The effect of crystallinity on photocatalytic performance of Co3O4 water-splitting cocatalysts. Physical Chemistry Chemical Physics, 2016. 18(7): p. 5172-5178.
136. A.N. Mansour, Nickel Monochromated Al Kα XPS Spectra from the Physical Electronics Model 5400 Spectrometer. Surface Science Spectra, 1994. 3(3): p. 221-230.
137. N. Kitakatsu, et al., Surface hydroxylation and local structure of NiO thin films formed on Ni (111). Surface science, 1998. 407(1-3): p. 36-58.
138. L. Marchetti, et al., XPS study of Ni‐base alloys oxide films formed in primary conditions of pressurized water reactor. Surface and Interface Analysis, 2015. 47(5): p. 632-642.
139. E. Ozensoy, J. Szanyi, and C.H. Peden, Interaction of water with ordered θ-Al2O3 ultrathin films grown on NiAl (100). The Journal of Physical Chemistry B, 2005. 109(8): p. 3431-3436.
140. G. Cherkashinin, D. Ensling, and W. Jaegermann, LiMO2 (M = Ni, Co) thin film cathode materials: a correlation between the valence state of transition metals and the electrochemical properties. Journal of Materials Chemistry A, 2014. 2(10): p. 3571-3580.
141. F. Ming, et al., MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. Journal of Materials Chemistry A, 2016. 4(39): p. 15148-15155.
142. H. Nesbitt, D. Legrand, and G. Bancroft, Interpretation of Ni 2p XPS spectra of Ni conductors and Ni insulators. Physics and Chemistry of Minerals, 2000. 27(5): p. 357-366.
143. A. Agrawal, et al., Effect of deposition pressure on the microstructure and electrochromic properties of electron-beam-evaporated nickel oxide films. Thin Solid Films, 1992. 221(1): p. 239-253.
144. S. Uhlenbrock, et al., The influence of defects on the Ni 2p and O 1s XPS of NiO. Journal of Physics: Condensed Matter, 1992. 4(40): p. 7973.
145. X. Liu, et al., Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. Journal of Materials Chemistry A, 2016. 4(1): p. 167-172.
146. P. Georgios and S.M. Wolfgang. X-ray photoelectron spectroscopy of anatase-TiO2 coated carbon nanotubes. in Solid State Phenomena. 2010. Trans Tech Publ.
147. C. Massaro, et al., Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. Journal of Materials Science: Materials in Medicine, 2002. 13(6): p. 535-548.
148. D. Leinen, et al., XPS and ISS study of NiTiO3 and PbTiO3 subjected to low‐energy ion bombardment. I. Influence of the type of ion (Ar+ and O2+). Surface and interface analysis, 1993. 20(12): p. 941-948.
149. M. LoáJacono, Preparation and characterisation of cobalt–copper hydroxysalts and their oxide products of decomposition. Journal of the Chemical Society, Faraday Transactions, 1992. 88(3): p. 311-319.
150. G.M. Ingo, S. Dirè, and F. Babonneau, XPS studies of SiO2-TiO2 powders prepared by sol-gel process. Applied Surface Science, 1993. 70: p. 230-234.
151. G.C. Allen, et al., X-ray photoelectron spectroscopy of iron–oxygen systems. Journal of the Chemical Society, Dalton Transactions, 1974(14): p. 1525-1530.
152. M. Peter, Valence and core photoemission of the films formed electrochemically on nickel in sulfuric acid. Journal of the Chemical Society, Faraday Transactions, 1994. 90(9): p. 1271-1278.
153. L. Wen, et al., Preparation, characterization and photocatalytic property of Ag-loaded TiO2 powders using photodeposition method. Journal of Wuhan University of Technology--Materials Science Edition, 2009. 24(2): p. 258-263.