簡易檢索 / 詳目顯示

研究生: 吳政衛
Chen-Wei Wu
論文名稱: 兩階段不同順序氫與氦離子佈植於矽(100)晶圓引發缺陷之動態演化與研究
指導教授: 梁正宏
Jenq-Horng Liang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 91
中文關鍵詞: 氫離子與氦離子離子劈裂技術離子佈植絕緣體上矽表面發泡發泡破裂
外文關鍵詞: Hydrogen and heliun ions, Ion cut, Ion implantation, Silicon on insulator, Surface blistering, exfoliation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文所探討的離子劈裂技術中,係旨於研究以兩階段不同順序的氫與氦離子佈植取代單階段的氫離子佈植,所造成矽(100)試片表面的發泡與發泡破裂現象以及試片內部缺陷的演化情形,並與只有單一階段氫離子佈植的結果進行交互比較。所使用的特性量測分析儀器包括:動態光學顯微分析儀器、拉曼光譜儀、二次離子質譜儀、以及穿透式電子顯微鏡。結果顯示:不同順序的兩階段離子佈植造成不一樣的缺陷分佈情形,也使得在使用特性量測儀器所觀察到的現象大不相同。加入氦離子佈植的試片在經退火後,其試片內部出現有明顯的長條裂縫,此一裂縫的生成是為絕緣體上矽薄膜能否成功轉移的重要關鍵,是以添加氦離子的兩階段離子佈植可以較單階段氫離子佈值提高了製作絕緣體上矽的成功機率。本論文所使用的兩階段氫與氦離子佈值試片經由適當的晶圓接合以及退火製程皆可得到絕緣體上矽結構,其中,氦先佈值(即 He+H)者其薄膜轉移的面積高於氦後佈值(即 H+He)者,絕緣體上矽薄膜的表面粗糙度亦是前者優於後者。總結而言,前者為較佳的製程。


    摘要 圖目錄 III 表目錄 VII 第一章 前言 1 第二章 文獻回顧 4 2.1 絕緣體上矽材料的發展歷史背景 4 2.2 絕緣體上矽材料製作元件的優勢 5 2.3 絕緣體上矽材料的各種製程技術 7 2.4 兩階段氫與氦離子佈植取代單階段氫離子佈植 11 第三章 實驗原理與方法 20 3.1 理論模擬 20 3.2 離子佈植 20 3.3 架設動態光學顯微儀器 21 3.4 特性量測 23 3.4.1 拉曼光譜系統 23 3.4.2 二次離子質譜儀 26 3.4.3 穿透式電子顯微鏡 28 第四章 結果與討論 39 4.1 測試動態光學顯微分析儀器 39 4.1.1 表面發泡成核與成長現象 39 4.1.2 表面發泡活化能 40 4.1.3 發泡破裂活化能 41 4.1.4 發泡破裂與時間之關係圖 42 4.1.5 Time-Temperature-Transformation curve 45 4.2 動態光學顯微分析技術應用於兩階段氫氦離子佈植試片43 4.2.1 He(先)+H(後) 43 4.2.2 H(先)+He(後) 44 4.2.3 比較 H、He+H、H+He佈植試片 45 4.3 拉曼光譜系統 46 4.3.1 拉曼光譜儀 46 4.3.2 一階散射峰光譜 46 4.3.3 氫複合缺陷的演化 48 4.3.4 拉曼光譜儀與動態光學顯微儀器的結合 50 4.4 二次離子質譜儀 51 4.4.1 SRIM 蒙地卡羅電腦模擬程式 51 4.4.2 矽靶材元素縱深分佈分析 52 4.5 穿透式電子顯微鏡 54 4.5.1 橫截面穿透式電子顯微鏡 54 4.5.2 退火前的試片 54 4.5.3 退火後的試片 55 4.6 利用兩階段氫與氦離子佈植製作絕緣體上矽 56 第五章 結論與建議 84 參考文獻 87

    [1] M. Bruel, Nucl. Instr. and Meth. B, 108 (1996) 313.
    [2] L. J. Huang, Q. Y. Tong, Y. L. Chao, and T. H. Lee,
    Appl. Phys. Lett., 74 (1999) 982.
    [3] M.K. Weldon, V.E. Marsico, Y.J. Chabal, A. Agarwal,
    D.J. Eaglesham, J. Sapjeta, W.L. Brown, D.C. Jacobson,
    Y. Caudano, S.B. Christman, E.E. Chaban, J. Vac. Sci.
    Technol., B15 (1997) 1065.
    [4] J. Grisolia, G.B. Assayag, A. Claverie, B. Aspar, C.
    Lagahe, and L. Laanab, Ap pl. Phys. Lett. 76,
    (2000) 852.
    [5] A. Agarwal, T. E. Haynes, V. C. Venezia, O. W. Holland,
    and D. J. Eaglesham, Appl. Phys. Lett. 72, 1086 (1998).
    [6] M.K. Weldon, M.Collot, Y.J.Chabal, V.C. Venezia, A.
    Agarwal, T.E. Haynes, D.J. Eaglesham, S.B. Christman,
    and E.E. Chaban, Appl. Phys. Lett. 73 (1998) 3721.
    [7] C. L. Blanchard, N. Sousbie, S. Sartori, H. Moriceau,
    A. Sousbie, B. Aspar, P. Nguyen, and B. Blondeau,
    Proceedings on the Semiconductor wafer Bonding VII:
    Science, Technology, and Application, Paris, France,
    Vol. PV2003–19, 27 (2003) 346.
    [8] P. Nguyen, I. Cayrefourcq, B. Blondeau, N. Sousbie, C.
    L. Blanchard, S. Sartori, and A. M. Cartier,
    Proceedings of the 2003 IEEE International SOI
    Conference, Newport Beach, CA, 29 (2003) 132.
    [9] J. P. Colinge, Silicon On Insulator Technology:Material
    to VLSI, (2004).
    [10] H.J. Woo, H.W. Choi, J.K. Kim, G.D. Kim, W. Hong, W.B.
    Choi and Y.H. Baec,Nucl. Instr. and Meth. B, 241
    (2005) 531.
    [11] A. Plossl and G. Krauter, Soloid-State Electron., 44
    (2000) 775.
    [12] 施敏, Semiconductor Devices Physics And Technology 2nd
    edition , (2001) 132.
    [13] L. Jastrzebski, J. F. Corboy, J. T. McGinn, and R.
    Pagliaro, Jr., J. Electrochem. Soc.:SOLID-STATE
    SCIENCE AND TECHNOLOGY, 130 (1983) 1571.
    [14] R. P. Zingg, H. G. Graf, W. Appel, P. Vohringer and B.
    Hofflinger, Institute for Microelectronics (1988) 52.
    [15] J. P. Denton and G. W. Neudeck, Int. IEEE SOI Conf.
    Proc., (1995) 135.
    [16] J. C. Chang, J. P. Denton, and G. W. Neudeck, Int.
    IEEE SOI Conf. Proc., (1996) 88.
    [17] Q.Y. Tong and U. Gosele, Semiconductor Wafer Bonding:
    Science and Technology, Wiley Publishing Company,
    London, (1999) 137.
    [18] M Watanabe and A. Tooi, Japan. J. Appl. Phys, 5 (1966)
    737.
    [19] K. Izumi, M. Doken and H. Ariyoshi, Electron. Lett.,
    14 (1978) 593.
    [20] S. Nakoshima, T. Katayama, Y. Miyamura, H. Matsuzaki,
    and M. Imai, et al., Int. IEEE SOI Conf. Proc., MA,
    (1994) 71.
    [21] T. Yonehara, K. Sakaguchi, and N. Sato, Appl. Phys.
    Lett., (1994) 64.
    [22] SOI wafers based on epitaxial technology, Solid-State
    Techno., June (2000) 88.
    [23] K. Sakaguchi, K. Yanagita, H. Kurisu, H. Suzuki, K.
    Ohmi and T. Yonehara, Int. IEEE SOI Conf. Proc.,
    (1999) 110.
    [24] M. Bruel, Electron. Lett., 31. 1201(1995).
    [25] X. Duo, W. Liu, S. Xing, M. Zhang, X. Fu, C. Lin, P.
    Hu, S. X. Wang, and L. M. Wang, J. Phys. D: Appl.
    Phys. 34 (2001) 5–11.
    [26] J. F. Ziegler, J.P. Biersack and U. Littmask, stopping
    and Range of ions in Solids, 1, Pergamon Press (1985)
    202.
    [27] 王孟亮,拉曼小傳,科學月刊167期,958頁。
    [28] Z. C. Feng, A. A. Allerman, P. A. Barnes, and S.
    Perkowitz, Appl. Phys. Lett., 60 (1992) 1848.
    [29] J. P. Estrera, P. D. Stevens, R. Glosser, W. M.
    Duncan, Y. C. Kao, Y. H. Liu, and E. A. Beam, Appl.
    Phys. Lett., 61 (1992) 1927.
    [30] G. Lucovsky, M. H. Brodsky, M. F. Chen, R. J.
    Chicotka, and A. T. Ward, Phys. Rev., B4 (1971) 1945.
    [31] K. J. Yano, and T. Katoda, J. Appl. Phys., 70 (1991)
    7036.
    [32] D. P. Bour, J. R. Shealy, A. Ksendzov, and F. Pollak,
    J. Appl. Phys., 64 (1988) 6456.
    [33] 蘇青森,儀器學,五南圖書出版股份有限公司,(2002) 76。
    [34] G. E. Jellison, Jr. and F. A. Modine, J. Appl. Phys.,
    76 (1994) 3758.
    [35] A. Benninghoven, F. G. Rudenauer, and H. W. Werner,
    Secondary Ion Mass Spectrometry: Basic Concepts,
    Instrumental Aspects, applications and Trends, John
    Wiley & Sons (1987) 950.
    [36] 陳力俊、張立、梁鉅銘、林又台、楊哲人、鄭晃忠,材料電
    子顯微鏡學,科儀叢書 3,國家科學委員會精密儀器發展
    中心,(1994)。
    [37] F. A. Reboredo, M. Ferconi, and S. T. Pantelides,
    Phys. Rev. Lett. 82 (1999) 4870.
    [38] Q. Y. Tong, K. Gutjahr, S. Hopfe, U. Go¨sele, and
    T.H. Lee, Appl. Phys.Lett. 70, 1390 (1997).
    [39] Moutanabbir, and B. Terreault, J. Chem. Phys., 121
    (2004) 7973.
    [40] B. B. Nielsen, L. Hoffmann, and M. Budde, Mater. Sci.
    Eng., B36 (1996) 259.
    [41] H. J. Stein, S. M. Myers, and D.M. Follstaedt, J.
    Appl. Phys., 73 (1993) 2755.
    [42] R. Job, A.G. Ulyashin, W.R. Fahrner, A.I. Ivanov, and
    L. Palmetshofer, Appl. Phys. A 72 (2001) 325.
    [43] S. M. Myers, D. M. Follstaedt, H.J. Stein, and W.R.
    Wampler, Phys. Rev., B47 (1993) 13380.
    [44] Y. J. Chabal, M. K. Weldon, Y. Caudano, B. B.
    Stefanov, and K. Raghvachari, Physica B, 273 (1999)
    152.
    [45] O. Moutanabbir, B. Terreault, M. Chicoinec, P.J.
    Simpsond, T. Zahele, and G. Hobler, Physica, B376
    (2006) 36.
    [46] K. P. Jain, A. K. Shukla, R. Ashokan, S. C. Abbi, and
    M. Balkanski, Phys. Rev. B32 (1985) 6688.
    [47] A. Othonos, C. Christofides, J. B. Said, and M.
    Bisson, J. Appl. Phy. 75 (1994) 8032.
    [48] A.J. Pitera, and E.A. Fitzgerald, J. Appl. Phys. 97
    (2005) 104511.
    [49] A. A. Valladares, A. Valladares, R.M. Valladares, and
    A. G. Calles, Mater. Res. Soc. Symp. Proc., 971 (2007)
    Z07-8.
    [50] J. H. Liang, C. Y. Bai,D. S. Chao, C. M. Lin, Nucl.
    Instr. Meth. B 266 (2008) 1349-1355.
    [51] J. H. Liang, C. Y. Bai,D. S. Chao, C. M. Lin, Nucl.
    Instr. Meth. B 266 (2008) 1562-1568.
    [52] T. Hochbauer, A. Misra, R. Verda, Y. Zheng, S.S. Lau,
    J.W. Mayer, and M. Nastasi, Nucl. Instr. Meth. B 175
    -177 (2001) 169.
    [53] Y. Zheng, S. S. Lau, T. Hochbauer, A. Misra, R. Verda,
    X.-M. He, M. Nastasi, and J. W. Mayer, J. Appl. Phys.,
    89 (2001) 2972.
    [54] M. Bruel, MRS Bull. 23, (1998) 35.
    [55] M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S.
    Cargill III, A. Kumar, and H. Bakhru, Appl. Phys.
    Lett., 73 (1998) 2293.
    [56] C. Qian, and B. Terreault, J. Appl. Phys., 90 (2001)
    5152.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE