簡易檢索 / 詳目顯示

研究生: 翁若甄
Weng, Ju Chen
論文名稱: 分析含有 hnRNP-Q 的顆粒蛋白質在大鼠皮質神經細胞軸突的表現與組成
Analyzing hnRNP-Q expression and hnRNP-Q-containing granules protein composition in the axons of rat cortical neurons in culture
指導教授: 張兗君
Chang, Yen Chung
口試委員: 周韻家
林玉俊
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 46
中文關鍵詞: hnRNP-Q皮質神經細胞
外文關鍵詞: hnRNP-Q, cortical neuron
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   神經細胞軸突中的局部蛋白質合成 (local protein synthesis) 作用,於軸突的生長、生長方向與突觸的形成扮演重要的角色,而目前已有大量的 mRNA 被定義在多種神經元的軸突中,這些 mRNA 被證明由核糖核蛋白顆粒 (ribonucleoprotein particles, RNPs) 將其運送至神經軸突,顆粒中的蛋白質與 microRNA 等不僅是運送 mRNA 至目的地,此複合物亦會調控剪切或編輯 mRNA 前驅物及 mRNA 的轉譯作用。本實驗室將懷孕 18 天胎鼠的皮質神經細胞培養在微接觸壓印玻璃裝置,在設計的區域內有完全單純的神經軸突生長至此,可以分別觀察細胞本體與神經軸突的部分。經由免疫螢光染色觀察發現 hnRNP-Q 會表現在神經軸突,若以腦源性神經營養因子 (brain-derived neurotrophic factor, BDNF) 加以刺激,hnRNP-Q 在神經軸突的表現程度會明顯上升。然而,如果在刺激 BDNF 之前將神經細胞本體與軸突間分離,hnRNP-Q 在軸突的表現量與控制組比較則不會有明顯差異,這個結論指出 BDNF 刺激後促使 hnRNP-Q 於神經軸突上表現量上升,是因為運輸蛋白質將 hnRNP-Q 自神經細胞本體運送至軸突而造成的。同時我也蒐集皮質神經細胞的蛋白質,針對 hnRNP-Q 進行免疫沉澱實驗,證明 hnRNP-Q 為一蛋白質複合體,且此複合物含有許多不同的蛋白質種類。未來,應進一步探討皮質神經細胞在刺激 BDNF 後,其免疫沉澱結果是否與未處理 BDNF 的組別有所差異,甚至可以分析其組成是否因受刺激而改變。並且將免疫沉澱後的膠體進行膠內原位酶解方法 (in-gel digestion),將觀察到的表現帶中的蛋白質分離出來,並以質譜儀鑑定。這些結果將會明確的了解神經元在受到不同刺激後,其 mRNA 被運送與調控的機制。


    Local protein synthesis in axons has been proposed to participate in the basal level growth, navigation and synaptogensis of axons. A large population of mRNA has been identified in the axons of different neurons. These mRNAs are believed to travel to the axon after being packed in ribonucleoprotein granules. The protein and microRNA components of these granules participate in not only the transport of mRNA, but they also regulate the splicing and editing of precursor mRNA and the translation of mRNA. Here, we culture rat cortical neurons of embryonic day 18 (E18) on a micropattern-coated glass chip, on which pure axons are guided to grow in designated areas. By means of fluorescence immunocytochemistry, hnRNP (heterogeneous nuclear ribonucleoprotein)-Q is found in axons. Upon treatments with brain-derived neurotrophic factorn (BDNF), hnRNP-Q expression level in axons increases. However, such increase in axons does not occur in axons which have been severed from their cell bodies. This finding indicates the trafficking of hnRNP-Q from somatodendrites to the axon after BDNF treatment. I have also isolated the proteins associated with hnRNP-Q from the lysates of cultured rat cortical neurons which have or have not been treated with BDNF by using immunoprecipitation. The co-immunoprecipitated proteins are first separated by gel-electrophoresis, subjected to in-gel digestion and finally identified by mass spectrometry. The results will shed lights to understanding the mechanism(s) underlying the transport of mRNAs in neurons when subjected to various stimulations.

    目錄 謝誌 英文摘要 中文摘要 目錄 壹、序論................................................................1 貳、實驗材料與方法......................................................7  一、實驗材料..........................................................7  (一) 微接觸壓印法與裝置..............................................7  (二) 細胞分離與培養..................................................7  (三) 免疫螢光染色....................................................8  (四) 其他生化實驗藥品................................................8  二、實驗方法..........................................................9  (一) 微接觸壓印圖案的設計與製作......................................9  (二) 大鼠胚胎皮質神經細胞分離與無血清培養...........................11  (三) 免疫螢光染色...................................................12  (四) 核酸染色.......................................................13  (五) 蛋白質萃取.....................................................13  (六) 蛋白質定量.....................................................13  (七) 膠體電泳.......................................................14  (八) 蛋白質透析.....................................................14  (九) 免疫吸附.......................................................14  (十) 甲醇/氯仿蛋白質沉澱法...........................................15  (十一) 銀染.........................................................15  (十二) 西方墨點法...................................................16 參、實驗結果.........................................................17  (一) 證明 hnRNP-K 與 hnRNP-Q 表現在皮質神經細胞軸突...............17  (二) 確認西方墨點法 hnRNP-Q 抗體稀釋比例與蛋白質樣本含量...........18  (三) 證明 hnRNP-Q 與 mRNA 於皮質神經細胞軸突有交互作用...........18  (四) BDNF 刺激可促使 hnRNP-Q 蛋白質於皮質神經細胞軸突的表現量上升..19  (五) BDNF 的刺激不改變 hnRNP-Q 蛋白質於皮質神經細胞本體及樹突的表現量    ................................................................20  (六) 將細胞本體與神經軸突分離後,BDNF 刺激並不會使 hnRNP-Q 蛋白質於皮    質神經細胞軸突的表現量上升.....................................21  (七) 證明 hnRNP-Q 為蛋白質複合物的一員.............................21 肆、討論.............................................................23  (一) 其他 RNA-結合蛋白質在皮質神經細胞的表現情形...................23  (二) hnRNP-Q mRNA 與蛋白質在神經細胞軸突表現狀況..................24  (三) BDNF刺激促使 hnRNP 自神經細胞本體運送至軸突..................25  (四) 進行免疫沉澱實驗之前應先進行交聯反應...........................26  (五)未來實驗設計....................................................27 伍、參考文獻.........................................................28 陸、圖...............................................................32  圖一、測試 hnRNP-K 抗體效用以及證明其表現於皮質神經細胞的軸突.....32  圖二、測試 hnRNP-Q 抗體效用以及證明其表現於皮質神經細胞的軸突.....33  圖三、確認西方墨點法其 hnRNP-Q 抗體最適濃度與蛋白質樣本量.........34  圖四、證明 hnRNP-Q 與 mRNA 於皮質神經細胞軸突有交互作用.........35  圖五、以 BDNF 刺激,觀察 hnRNP-Q 於皮質神經細胞軸突表現的差異...36  圖六、根據圖四,分析不同組別中顆粒大小與數量的關係.................37  圖七、以 BDNF 刺激,觀察 hnRNP-Q 於皮質神經細胞本體及樹突表現的差異     .............................................................38  圖八、將軸突與細胞本體分離並以 BDNF 刺激,觀察 hnRNP-Q 於皮質神經細     胞軸突表現的差異.............................................39  圖九、根據圖六,分析不同組別中顆粒大小與數量的關係.................40  圖十、證明hnRNP-Q為一蛋白質複合物................................41 柒、附件.............................................................42 捌、表...............................................................46

    伍、參考文獻
    Aakalu, G., Smith, W. B., Nguyen, N., Jiang, C., & Schuman, E. M. (2001). Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron, 30(2), 489-502.
    Blumenthal, J., Behar, L., Elliott, E., & Ginzburg, I. (2009). Dcp1a phosphorylation along neuronal development and stress. FEBS Lett, 583(1), 197-201.
    Carvalho, A. L., Caldeira, M. V., Santos, S. D., & Duarte, C. B. (2008). Role of the brain-derived neurotrophic factor at glutamatergic synapses. Br J Pharmacol, 153 Suppl 1, S310-324.
    Chen, H. H., Chang, J. G., Lu, R. M., Peng, T. Y., & Tarn, W. Y. (2008). The RNA binding protein hnRNP Q modulates the utilization of exon 7 in the survival motor neuron 2 (SMN2) gene. Mol Cell Biol, 28(22), 6929-6938.
    Chen, H. H., Yu, H. I., Chiang, W. C., Lin, Y. D., Shia, B. C., & Tarn, W. Y. (2012). hnRNP Q regulates Cdc42-mediated neuronal morphogenesis. Mol Cell Biol, 32(12), 2224-2238.
    Cougot, N., Bhattacharyya, S. N., Tapia-Arancibia, L., Bordonne, R., Filipowicz, W., Bertrand, E., & Rage, F. (2008). Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J Neurosci, 28(51), 13793-13804.
    Dreyfuss, G. (1986). Structure and function of nuclear and cytoplasmic ribonucleoprotein particles. Annu Rev Cell Biol, 2, 459-498.
    Dreyfuss, G., Matunis, M. J., Pinol-Roma, S., & Burd, C. G. (1993). hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem, 62, 289-321.
    Duchaine, T. F., Hemraj, I., Furic, L., Deitinghoff, A., Kiebler, M. A., & DesGroseillers, L. (2002). Staufen2 isoforms localize to the somatodendritic domain of neurons and interact with different organelles. J Cell Sci, 115(Pt 16), 3285-3295.
    Fujii, R., Okabe, S., Urushido, T., Inoue, K., Yoshimura, A., Tachibana, T., . . . Takumi, T. (2005). The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr Biol, 15(6), 587-593.
    Giuditta, A., Dettbarn, W. D., & Brzin, M. (1968). Protein synthesis in the isolated giant axon of the squid. Proc Natl Acad Sci U S A, 59(4), 1284-1287.
    Giuditta, A., Hunt, T., & Santella, L. (1986). Rapid important paper Messenger RNA in squid axoplasm. Neurochem Int, 8(3), 435-442.
    Giuditta, A., Menichini, E., Perrone Capano, C., Langella, M., Martin, R., Castigli, E., & Kaplan, B. B. (1991). Active polysomes in the axoplasm of the squid giant axon. J Neurosci Res, 28(1), 18-28.
    Goetze, B., Tuebing, F., Xie, Y., Dorostkar, M. M., Thomas, S., Pehl, U., . . . Kiebler, M. A. (2006). The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis. J Cell Biol, 172(2), 221-231.
    Hsu, W. L., Chung, H. W., Wu, C. Y., Wu, H. I., Lee, Y. T., Chen, E. C., . . . Chang, Y. C. (2015). Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating AMPA Receptors and Metabotropic Glutamate Receptors. J Biol Chem.
    Huang, Y. W., Ruiz, C. R., Eyler, E. C., Lin, K., & Meffert, M. K. (2012). Dual regulation of miRNA biogenesis generates target specificity in neurotrophin-induced protein synthesis. Cell, 148(5), 933-946.
    Jung, H., Yoon, B. C., & Holt, C. E. (2012). Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci, 13(5), 308-324.
    Kanai, Y., Dohmae, N., & Hirokawa, N. (2004). Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron, 43(4), 513-525.
    Kang, H., & Schuman, E. M. (1996). A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science, 273(5280), 1402-1406.
    Kiebler, M. A., & Bassell, G. J. (2006). Neuronal RNA granules: movers and makers. Neuron, 51(6), 685-690.
    Knowles, R. B., Sabry, J. H., Martone, M. E., Deerinck, T. J., Ellisman, M. H., Bassell, G. J., & Kosik, K. S. (1996). Translocation of RNA granules in living neurons. J Neurosci, 16(24), 7812-7820.
    Leal, G., Comprido, D., & Duarte, C. B. (2014). BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology, 76 Pt C, 639-656.

    Lee, K. H., Woo, K. C., Kim, D. Y., Kim, T. D., Shin, J., Park, S. M., . . . Kim, K. T. (2012). Rhythmic interaction between Period1 mRNA and hnRNP Q leads to circadian time-dependent translation. Mol Cell Biol, 32(3), 717-728.
    Liu, Y., & Szaro, B. G. (2011). hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis. Development, 138(14), 3079-3090.
    Martin, K. C. (2004). Local protein synthesis during axon guidance and synaptic plasticity. Curr Opin Neurobiol, 14(3), 305-310.
    Martin, K. C., Casadio, A., Zhu, H., Yaping, E., Rose, J. C., Chen, M., . . . Kandel, E. R. (1997). Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell, 91(7), 927-938.
    Martin, K. C., & Zukin, R. S. (2006). RNA trafficking and local protein synthesis in dendrites: an overview. J Neurosci, 26(27), 7131-7134.
    Monani, U. R. (2005). Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron, 48(6), 885-896.
    Monshausen, M., Gehring, N. H., & Kosik, K. S. (2004). The mammalian RNA-binding protein Staufen2 links nuclear and cytoplasmic RNA processing pathways in neurons. Neuromolecular Med, 6(2-3), 127-144.
    Moser, J. J., & Fritzler, M. J. (2010). Cytoplasmic ribonucleoprotein (RNP) bodies and their relationship to GW/P bodies. Int J Biochem Cell Biol, 42(6), 828-843.
    Mourelatos, Z., Abel, L., Yong, J., Kataoka, N., & Dreyfuss, G. (2001). SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J, 20(19), 5443-5452.
    Pinol-Roma, S., & Dreyfuss, G. (1992). Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature, 355(6362), 730-732.
    Richard B. Wells. (2005). Cortical Neurons and Circuits: A Tutorial Introduction.
    Sasaki, Y., Welshhans, K., Wen, Z., Yao, J., Xu, M., Goshima, Y., . . . Bassell, G. J. (2010). Phosphorylation of zipcode binding protein 1 is required for brain-derived neurotrophic factor signaling of local beta-actin synthesis and growth cone turning. J Neurosci, 30(28), 9349-9358.
    Steward, O., & Levy, W. B. (1982). Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J Neurosci, 2(3), 284-291.
    Taylor, A. M., Berchtold, N. C., Perreau, V. M., Tu, C. H., Li Jeon, N., & Cotman, C. W. (2009). Axonal mRNA in uninjured and regenerating cortical mammalian axons. J Neurosci, 29(15), 4697-4707.
    Verma, P., Chierzi, S., Codd, A. M., Campbell, D. S., Meyer, R. L., Holt, C. E., & Fawcett, J. W. (2005). Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci, 25(2), 331-342.
    Wang, Y. Y., Wu, H. I., Hsu, W. L., Chung, H. W., Yang, P. H., Chang, Y. C., & Chow, W. Y. (2014). In vitro growth conditions and development affect differential distributions of RNA in axonal growth cones and shafts of cultured rat hippocampal neurons. Mol Cell Neurosci, 61, 141-151.
    Welshhans, K., & Bassell, G. J. (2011). Netrin-1-induced local beta-actin synthesis and growth cone guidance requires zipcode binding protein 1. J Neurosci, 31(27), 9800-9813.
    Xing, L., Yao, X., Williams, K. R., & Bassell, G. J. (2012). Negative regulation of RhoA translation and signaling by hnRNP-Q1 affects cellular morphogenesis. Mol Biol Cell, 23(8), 1500-1509.
    Yano, M., Ohtsuka, T., & Okano, H. (2015). RNA-binding protein research with transcriptome-wide technologies in neural development. Cell Tissue Res, 359(1), 135-144.
    Ying, S. W., Futter, M., Rosenblum, K., Webber, M. J., Hunt, S. P., Bliss, T. V., & Bramham, C. R. (2002). Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci, 22(5), 1532-1540.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE