簡易檢索 / 詳目顯示

研究生: 希蘇翰
Suhail Kizhakkeveettil Siddique
論文名稱: 利用嵌段共聚物模板化聚合法製備高有序奈米網狀機械超穎材料
Well-Ordered Nanonetwork Materials from Block Copolymer Templates for Mechanical Metamaterials
指導教授: 何榮銘
Ho, Rong-Ming
口試委員: 張守一
Chang, Shou-Yi
許千樹
Hsu, Chain-Shu
蔣酉旺
Chiang, Yeo-Wan
蔡敬誠
Tsai, Jing Cherng
鄭如忠
Jeng, Ru-Jong
李昌駿
Lee, Chang-Chun
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 169
中文關鍵詞: 嵌段共聚物機械超穎材料奈米網狀結構模板化合成法模板化電沉積法
外文關鍵詞: Block Copolymer, Mechanical Metamaterials, Templated polymerization, Templated Electrochemical Deposition
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去的數十年間,機械超穎材料獲得廣大的關注,機械超穎材料乃利用創新、且特異化的結構設計改變塊材原本機械性質,達到材料機械性之提升。本研究致力於探討結構特異化對於高有序奈米網狀材料其機械性質的影響。其中,透過精準控制嵌段共聚物自組裝過程,已成功製備高有序奈米網狀材料,並以模板化製程研究高分子及金屬塊材,經過結構特異化後其機械性質之改善。本研究考量不同溶劑對嵌段共聚物聚苯乙烯- b -聚二甲基矽氧烷 ( polystyrene-b-polydimethylsiloxane, PS-b-PDMS ) 之選擇性,應用於浸塗成膜、以及溶劑濕式退火製程。由於PS-b-PDMS兩高分子鏈段有較大的互作用參數,本文透過精準控制溶劑退火的參數,可有效形成多樣的高有序奈米結構,例如圓柱狀結構膜、雙螺旋 ( Double Gyroid, DG ) 結構膜、雙鑽石 ( Double Diamond, DD ) 結構膜,以及層板狀結構膜。經溶劑退火具備之多樣、高有序奈米結構薄膜,後續將用於討論多樣結構特異化對薄膜材料機械性質的影響。
    奈米壓痕技術目前已廣泛應用於薄膜機械性質之探討,本研究採用奈米壓痕技術測試嵌段共聚物結構膜,藉以了解拓譜效應對高有序奈米材料機械性質之影響。量測結果顯示,不同於柱狀結構膜較低的簡化彈性模量 ( Reduced Elastic Modulus, Er ) 0.52 GPa ,層板狀結構膜利用狀堆疊結構,產生橫向協作的連續形變以分散應力,因此層板狀結構膜具有較高之膜量0.91 GPa 。值得我們注意的是,DG結構相較於層板狀結透而言,具有顯著的膜量增加 1.5 GPa ;此外,DD結構可進一步提升膜量至2.2 GPa。換而言之,高有序奈米網狀結構可引導材料提供優異的機械性質表現,其中PDMS之雙連續相可有效限制形變及缺陷產生。透過比較DD結構膜與DG結構膜之簡化膜量 Er,可藉此瞭解拓樸效應對機械性質之影響。DD結構膜具有四岔支柱之PDMS相,相較於三岔之DG結構,雙鑽石結構膜著實呈現更為出色的能量耗散特性。另一方面,本研究比較單一方向晶面與多向晶面奈米結構膜,兩者機械性質之差異。單一方向的 [211] 晶面DG結構膜其模量為2.5 GPa,遠大於多向晶面DG結構膜之平均模量1.5 GPa;由此推論,模量的提升乃源自於單一晶面 [211] 具備高強度之結構韌性,有效限制材料受壓後沿 [111] 方向的連續形變。根據量測結果顯示,相對於尺寸及結構因素,奈米壓痕技術說明非同向性對於機械性質的影響。
    在近期的研究中,嵌段共聚物自組裝行為的應用已被證明為一項強大的工具,用以進行高有序奈米網狀材料的製備,透過模版化製程技術,材料的結構尺寸、及形狀皆可能夠精準地控制。有鑑於此,本研究使用氫氟酸對PS-b-PDMS結構膜進行濕式蝕刻,PDMS雙連續網狀結構經水解移除後,形成高有序、連續奈米通道的PS支架。在後續的模板化製程中,以高有序、連續奈米PS支架作為模板,方可進行機械超穎材料之製備。因此,以PS-b-PDMS自組裝形成之DG三岔支柱結構、以及DD四岔支柱結構為模板,採用熱固性高分子酚醛樹脂 ( phenolic resin ) 、以及環氧樹脂 ( epoxy resin ) 經模板化製程,可成功地製備超穎機械特性之高有序、奈米網狀材料。由奈米壓痕技術量測結果顯示,藉由引入特異化奈米網狀結構於熱固性樹脂,提升材料塑性形變的能力,不同於塊材本身易脆的特性,其具有較大能量耗散的能力。應力-應變圖經過積分後,可得到材料之能量耗散數值。當負載極限為1000μN , DG酚醛樹脂的能量耗散為0.23 nJ , DD酚醛樹脂的能量耗散則增加為0.33 nJ ;同理可證,DG與DD兩種結構對於能量耗散的影響,在量測結果中可得到相同的趨勢,DG環氧樹脂的能量耗散為0.57 nJ,DD環氧樹脂則為0.78 nJ。與此同時,奈米網狀DD環氧樹脂的單位體積能量耗散高達9.32 MJ / m3,應用上,奈米網狀DD環氧樹脂成功在極小的材料形變下與塊材相近之能量耗散能力。本研究推論該特性之提升,乃因為週期性奈米網狀結構提供彎曲主導的塑性形變能力;此外我們以有限元素分析法驗證實驗結果,說明DD之四岔支柱結構相較於DG之三岔支柱而言,能夠更有效地分散單一節點的支應力集中。
    為了進一步提升奈米網狀環氧樹脂的能量耗散能力,我們透過簡單地在環氧樹脂中引入嵌段共聚物改質劑聚丙烯酸丁酯 - b - 聚甲基丙烯酸甲酯 ( poly(butyl acrylate)-b-poly(methyl methacrylate) , PBA-b-PMMA )。經過模板化製程技術,改性後的奈米網狀環氧樹脂材料具有奈米尺度之結構效應、以及參雜分子層級的改質劑以提升強韌性。奈米壓痕量測結果顯示,透過結構特異性、與改質劑兩者之協同效應,高有序奈米網狀環氧樹脂材料具備極高的能量耗散能力。除此之外,透過比較能量耗散之計算值,DG環氧樹脂與DD環氧樹脂經過改值後有顯著的提升,能量耗散分別約為0.36 nJ和0.43 nJ,遠高於環氧樹脂塊材之0.02 nJ。
    總結此部分研究而言,添加改質劑於環氧樹脂韌化,提供對環氧樹脂親和力較高之硬段、以及弱親和力之軟段,在奈米網狀結構中分散之硬段及軟段可達到優異的能量吸收能力。另一方面,不同於先前論述探討結構效應對脆性材料機械性質的影響,我們同時考慮對於具備高延展性之金屬材料,結構特異化對其造成的影響。結合電化學沉積與模板化製程,可成功製備高有序金 ( Au ) 奈米網狀材料。由奈米壓痕實驗結果驗證,金奈米網狀材料的簡易彈性膜量、和降伏強度兩項機械性質,皆有優異的表現。當奈米網狀材料之相對為0.35時,金DD結構之簡易膜量為11.9 GPa,著實超出倍進率之預測值。其中引起我們注意的是,原位微米壓縮技術結果顯示,金DD結構具有極大的降伏強度310 MPa,其量測值近似於金孔洞材料之極大值;同時單位體積之能量耗散可達270 MJ/m3。由此可知,奈米尺度的四岔支柱DD結構提供以彎曲特性主導之金屬奈米網狀結構。透過有系統地進行有限元素分析,進一步確認奈米網狀結構中單一支柱的形變機制包含彎曲、以及塑性屈曲行為,說明奈米尺度結構提供高有序奈米網狀材料整體之優異機械特性。總結本研究成果,以自下至上的方法製備高有序高分子、以及金奈米網狀材料,提供低密度孔洞材料製備一項簡易、可量產的方法,同時保有材料之機械強度。


    In the past decade, mechanical metamaterials have garnered increasing attention due to its novel design principles for the enhancement of mechanical properties. The mechanical metamaterials are materials whose effective properties result from their deliberate structuring rather than the bulk behavior of the materials that composed it. Herein, this work aims to demonstrate the effect of deliberate structuring on the mechanical properties (the characteristics of mechanical metamaterials) of nanonetwork-structured materials fabricated from the self-assembly of block copolymers (BCPs) and/or the platform technology of templated syntheses. By tuning the selectivity of solvent for casting or annealing of self-assembled lamellae-forming BCP, polystyrene-b-polydimethylsiloxane (PS-b-PDMS), a variety of nanostructured phases including cylinder, double gyroid (DG), double diamond (DD) and lamellar phases in the film state can be obtained due to large interaction parameter of the PS-b-PDMS.
    The nanostructured BCP thin films fabricated are examined by nanoindentation to demonstrate the topological effect on mechanical properties. In contrast to the reduced elastic modulus (Er) (0.52 GPa) of PS-b-PDMS with cylinder structure, lamellar structure exhibits higher modulus of 0.91 GPa due to the layer-by-layer texture with cooperatively continuous deformation. Most interestingly, the gyroid-structured PS-b-PDMS shows significant increase in the modulus with a value of 1.5 GPa; the one with diamond structure even reaches 2.2 GPa. Namely, the well-ordered nanonetwork texture gives rise to outstanding mechanical properties due to the interconnected PDMS networks that could restrict the rapid deformation. Also, the diamond with tetrapod texture is indeed superior to the gyroid with trigonal planar texture, reflecting the topological effect on mechanical performance. Moreover, the reduced elastic modulus (2.5 GPa) of oriented gyroid with (211) surface is superior to the one without orientation control with an average value of 1.5 GPa; we speculate that the enhancement is attributed to the superior tenacity towards continuous deformation along [111] direction. The nanoindentation results suggest the anisotropic (orientation) effect beside the size and the shape effects on mechanical properties.
    Recently, the use of self-assembly of block-copolymers has been proved to be an emerging powerful tool for fabrication of well-ordered nanonetwork materials with precise control over the structural dimensions and shape as well as corresponding special arrangements through the platform technology of templated syntheses. Nanoporous PS with well-ordered nanochannels can be fabricated after hydrofluoric acid (HF) etching of PDMS block in the self-assembled PS-b-PDMS; it can be used as templates for the fabrication of well-ordered nanonetwork materials with the characters of mechanical metamaterial via templated synthesis. As a result, well-ordered nanonetwork mechanical metamaterials fabricated by templated polymerization of thermosets including phenolic and epoxy resins can be precisely designed to have specific cell geometry, topology and high porosity, using self-assembled PS-b-PDMS with triagonal planar network (gyroid), and tetrapod network (diamond) structures as templates. Nanoindentation studies on the nanonetwork thermosets fabricated reveal high energy dissipation with large plastic deformation from intrinsic brittle thermosets due to the deliberate structuring; the calculated energy dissipation for gyroid phenolic resins is 0.23 nJ whereas the one with diamond structure gives a value of 0.33 nJ at a load of 1000μN. Consistently, the gyroid-structured epoxy gives a high energy dissipation value of 0.57 nJ, and the one with diamond structure could reach 0.78 nJ. Moreover, the nanonetworks epoxy with diamond structure shows large mechanical energy dissipation per volume (up to 9.32 MJ/m3), comparable to the highest values achieved in the conventional polymer foams but at a far smaller strain. These enhanced properties are attributed to the isotropic periodicity of the nanonetwork texture with plastic deformation, and the higher number of struts in the tetrapod diamond network in contrast to tripod gyroid, as confirmed by the finite element analysis.
    To further enhance the energy dissipation of the nanonetwork epoxy, a facile approach is to introduce a block copolymer-based (BCP) modifier, poly(butyl acrylate)-b-poly(methyl methacrylate) (PBA-b-PMMA), to the well-ordered nanonetwork epoxy resins. Nanoindentation studies on the modified nanonetwork-structured epoxy fabricated reveal significant enhancement on energy dissipation capability as compared to intrinsic epoxy with brittle character due to the synergic effect of deliberate structuring of ordered network texture in nanoscale and toughening of BCP-based modifier from molecular level; in contrast to the calculated energy dissipation for intrinsic epoxy resins (approximately 0.02 nJ), the ones with gyroid- and diamond-structured epoxy resins after modification gives significant improvement with the values of 0.36 nJ and 0.43 nJ, respectively. In addition to the structural effect from the nanonetwork texture, these enhanced properties are attributed to the BCP composed of epoxy-philic hard segment and epoxy-phobic soft segment to give the dispersed soft and hard segment nanodomains within the nanonetwork-structured epoxy matrix for the enhancement on applied energy absorption.
    In contrast to the effect of deliberate structuring on brittle materials, we are also interested in the effect on ductile materials such as metallic materials. By taking advantage of a platform technology for templated electrochemical deposition, well-defined multibranched metallic nanonetworks from gold (Au) can be fabricated by using the well-ordered polymeric templates. The aimed structuring effect of ligament size could be extended and exemplified to metallic mechanical metamaterials; the deliberate structuring effect on the yield stress of Au besides energy absorption to give a systematic comparison for the effect on brittle epoxy resins and ductile metallic materials. As evidenced by nanoindentation, the nanonetwork Au fabricated reveals mechanical superiority by means of reduced elastic modulus and yield strength; the diamond-structured Au gives the reduced elastic modulus (Er) of approximately 11.9 GPa at relative density of 0.35 which is indeed over the theoretical upper bound by scaling law. Most interestingly, the in-situ micro-compression test shows the high yield strength of 310 MPa which is near to the theoretical upper bound of porous Au, and the high energy dissipation per volume of 270 MJ/m3 from plastic deformation. The high mechanical properties of bending-dominated metallic nanonetworks are attributed to the deliberate structuring of diamond architecture with four connective structs in nanoscale. The comprehensive study of Finite Element Analysis (FEA) reassures the deformation mechanism of the struts by bending and buckling plasticity, giving superior mechanical properties with nanosized effect. This bottom-up approach for the fabrication of well-ordered polymeric and metallic (Au) nanonetwork opens the door for fabricating low-density materials without forfeiting their mechanical properties.

    Abstract……………………………………………………………….….I Contents……………………………………………………………...…..X List of Figures……………….……………………………………..…XIV List of Schemes………………………………………………...... XXVIII List of Tables……………………………………………………..…XXIX Abbreviations………………………………………………………..XXX Chapter 1 Introduction…………………………………………………1 1.1 Metamaterials………………………………………………………...1 1.1.1 General concept of metamaterials…………………………..….1 1.1.2 Mechanical metamaterials……………………………………...2 1.1.3 Structures of mechanical metamaterials………………………..5 1.1.4 Bending versus stretching dominated architectures……………7 1.1.5 Micro/nano structured mechanical metamaterials…………….11 1.1.6 Mechanical metamaterials for high energy absorption………..17 1.2 Templated Syntheses………………………………………………...21 1.3 Self-Assembly………………………………………………………26 1.4 Self-Assembly of Block Copolymers………………………………29 1.4.1 Self-assembled nanostructures from BCP self-assembly……...29 1.4.2 Nanostructures of gyroid and diamond phases………………...31 1.4.3 Self-assembly of silicon containing BCPs…………………….34 1.5 Nanoporous Templates from Degradable Block Copolymers……....39 1.6 Templated Synthesis of Well-Ordered Nanomaterial……………….44 1.6.1 Templated synthesis of inorganic materials………………..44 1.6.2 Templated polymerization of well-ordered polymers……...50 1.6.3. Templated electrochemical deposition……………………52 Chapter 2 Objectives…………………………………………………..57 Chapter 3 Experimental Section……………………………………...61 3.1 Materials 3.1.1 Synthesis and characterization of PS-b-PDMS block copolymers………………………………………………….…....61 3.1.2 Solution casting of PS-b-PDMS in gyroid morphology……………………………………………………....64 3.1.3 Fabrication of nanoporous PS templates……………….…..64 3.2 Templated Syntheses……………………………………………......65 3.2.1 Templated syntheses of phenolic resin…………………….65 3.2.2 Templated polymerization of epoxy resins………………...66 3.2.3 Templated polymerization of PBA-b-PMMA modified epoxy resins…………………….………………………...………….….67 3.2.4 Templated electrochemical deposition of gold (Au)………...68 3.2.5 Removal of the PS template………………………………..68 3.3 Mechanical Property Measurements………………………………..69 3.3.1 Nanoindentation measurements ………………………….. 69 3.3.2 Uniaxial Compression……………………………………..69 3.4 Finite Element Analysis (FEA)……………………………………...70 3.5 Characterization and Instrumentation……………………………….71 3.5.1 Transmission electron microscopy (TEM)…………………71 3.5.2 Electron tomography (3D-TEM) ………………………….72 3.5.3 Small-angle X-ray scattering (SAXS)……………………...72 3.5.4 Scanning electron microscopy (SEM)………………………72 3.5.5 Nanoindentation measurements…………………………....72 Chapter 4 Results and Discussions…………………………………. ..74 4.1 Mechanical Properties of Self-Assembled Block Copolymers……..74 4.1.1 Solution casting of PS-b-PDMS…………………………....74 4.1.2 Controlled self-assembly in PS-b-PDMS thick Film……….77 4.1.3 Mechanical properties of self-assembled morphologies…. 82 4.1.4 Orientation effect on mechanical properties of double gyroid (DG)……………………………………………………...……...88 4.2 Fabrication of Mechanical Metamaterials by Templated Polymerization…………………………………………………....92 4.2.1 Fabrication of well-ordered nanoporous template……………92 4.2.2 Templated polymerization for fabrication of mechanical metamaterials…………………………………………………….94 4.2.3 Mechanical properties of polymeric mechanical metamaterials…………………………………………………...102 4.2.4 Finite element analysis of polymeric mechanical metamaterials…………………………………………………...108 4.3 Fabrication of Modified Epoxy as Mechanical Metamaterials by Templated Polymerization…………………………………………114 4.3.1 Characterization of block copolymer-based modifier (PBA-b-PMMA) …………………………………………………….…..114 4.3.2 Templated polymerization of BCP modified epoxy resins…………………………………………………………….119 4.3.3 Mechanical Properties of BCP modified epoxy resins…………………………………………………………….124 4.4 Well-Ordered Nanonetwork Au for Mechanical Metamaterials…..129 4.4.1 Templated electrochemical deposition of gold (Au)……...130 4.4.2 Mechanical Properties of diamond-structured Au…………………………………………………………….....134 4.4.3 Finite element analysis of diamond-structured Au……………………………………………………………....145 Chapter 5 Conclusions……………………………………………….150 Chapter 6 Future Works……………………………………………..155 Chapter 7 References………………………………………………...158

    1. Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K., Metamaterials and Negative Refractive Index. Science 2004, 305 (5685), 788.
    2. Smith, D. R.; Padilla, W. J.; Vier, D. C.; Nemat-Nasser, S. C.; Schultz, S., Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters 2000, 84 (18), 4184-4187.
    3. Pendry, J. B.; Martín-Moreno, L.; Garcia-Vidal, F. J., Mimicking Surface Plasmons with Structured Surfaces. Science 2004, 305 (5685), 847-848.
    4. Biener, J.; Nyce, G. W.; Hodge, A. M.; Biener, M. M.; Hamza, A. V.; Maier, S. A., Nanoporous Plasmonic Metamaterials. Advanced Materials 2008, 20 (6), 1211-1217.
    5. Gallego, N. C.; Klett, J. W., Carbon foams for thermal management. Carbon 2003, 41 (7), 1461-1466.
    6. Milton, G. W., The Theory of Composites. Cambridge University Press: Cambridge, 2002.
    7. Deshpande, V. S.; Ashby, M. F.; Fleck, N. A., Foam topology: bending versus stretching dominated architectures. Acta Materialia 2001, 49 (6), 1035-1040.
    8. Gibson, L. J.; Ashby, M. F., Cellular Solids: Structure and Properties. 2 ed.; Cambridge University Press: Cambridge, 1997.
    9. Deshpande, V. S.; Fleck, N. A.; Ashby, M. F., Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 2001, 49 (8), 1747-1769.
    10. Cui, T. J.; Liu, R.; Smith, D. R., Introduction to Metamaterials. In Metamaterials: Theory, Design, and Applications, Cui, T. J.; Smith, D.; Liu, R., Eds. Springer US: Boston, MA, 2010; pp 1-19.
    11. Nicolaou, Z. G.; Motter, A. E., Mechanical metamaterials with negative compressibility transitions. Nature Materials 2012, 11 (7), 608-613.
    12. Krödel, S.; Delpero, T.; Bergamini, A.; Ermanni, P.; Kochmann, D. M., 3D Auxetic Microlattices with Independently Controllable Acoustic Band Gaps and Quasi-Static Elastic Moduli. Advanced Engineering Materials 2014, 16 (4), 357-363.
    13. Maldovan, M.; Ullal, C. K.; Carter, W. C.; Thomas, E. L., Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups. Nature Materials 2003, 2 (10), 664-667.
    14. Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L., Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Progress in Materials Science 2018, 94, 114-173.
    15. Kussell, E.; Leibler, S., Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments. Science 2005, 309 (5743), 2075-2078.
    16. Aizenberg, J.; Weaver James, C.; Thanawala Monica, S.; Sundar Vikram, C.; Morse Daniel, E.; Fratzl, P., Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale. Science 2005, 309 (5732), 275-278.
    17. Huang, W.; Shishehbor, M.; Guarín-Zapata, N.; Kirchhofer, N. D.; Li, J.; Cruz, L.; Wang, T.; Bhowmick, S.; Stauffer, D.; Manimunda, P.; Bozhilov, K. N.; Caldwell, R.; Zavattieri, P.; Kisailus, D., A natural impact-resistant bicontinuous composite nanoparticle coating. Nature Materials 2020, 19 (11), 1236-1243.
    18. Zheng, X.; Smith, W.; Jackson, J.; Moran, B.; Cui, H.; Chen, D.; Ye, J.; Fang, N.; Rodriguez, N.; Weisgraber, T.; Spadaccini, C. M., Multiscale metallic metamaterials. Nature Materials 2016, 15 (10), 1100-1106.
    19. Zheng, X.; Lee, H.; Weisgraber, T. H.; Shusteff, M.; DeOtte, J.; Duoss, E. B.; Kuntz, J. D.; Biener, M. M.; Ge, Q.; Jackson, J. A.; Kucheyev, S. O.; Fang, N. X.; Spadaccini, C. M., Ultralight, ultrastiff mechanical metamaterials. Science 2014, 344 (6190), 1373-7.
    20. Kadic, M.; Bückmann, T.; Stenger, N.; Thiel, M.; Wegener, M., On the practicability of pentamode mechanical metamaterials. Applied Physics Letters 2012, 100 (19), 191901.
    21. Lee, J.-H.; Singer, J. P.; Thomas, E. L., Micro-/Nanostructured Mechanical Metamaterials. Advanced Materials 2012, 24 (36), 4782-4810.
    22. Vignolini, S.; Yufa, N. A.; Cunha, P. S.; Guldin, S.; Rushkin, I.; Stefik, M.; Hur, K.; Wiesner, U.; Baumberg, J. J.; Steiner, U., A 3D Optical Metamaterial Made by Self-Assembly. Advanced Materials 2012, 24 (10), OP23-OP27.
    23. Hewage, T. A. M.; Alderson, K. L.; Alderson, A.; Scarpa, F., Double-Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson's Ratio Properties. Advanced Materials 2016, 28 (46), 10323-10332.
    24. Bertoldi, K.; Vitelli, V.; Christensen, J.; van Hecke, M., Flexible mechanical metamaterials. Nature Reviews Materials 2017, 2 (11), 17066.
    25. Frenzel, T.; Kadic, M.; Wegener, M., Three-dimensional mechanical metamaterials with a twist. Science 2017, 358 (6366), 1072.
    26. Matlack, K. H.; Serra-Garcia, M.; Palermo, A.; Huber, S. D.; Daraio, C., Designing perturbative metamaterials from discrete models. Nature Materials 2018, 17 (4), 323-328.
    27. Surjadi, J. U.; Gao, L.; Du, H.; Li, X.; Xiong, X.; Fang, N. X.; Lu, Y., Mechanical Metamaterials and Their Engineering Applications. Advanced Engineering Materials 2019, 21 (3), 1800864.
    28. Kadic, M.; Milton, G. W.; van Hecke, M.; Wegener, M., 3D metamaterials. Nature Reviews Physics 2019, 1 (3), 198-210.
    29. Yuan, S.; Chua, C. K.; Zhou, K., 3D-Printed Mechanical Metamaterials with High Energy Absorption. Advanced Materials Technologies 2019, 4 (3), 1800419.
    30. Portela, C. M.; Edwards, B. W.; Veysset, D.; Sun, Y.; Nelson, K. A.; Kochmann, D. M.; Greer, J. R., Supersonic impact resilience of nanoarchitected carbon. Nature Materials 2021.
    31. Montemayor, L. C.; Meza, L. R.; Greer, J. R., Design and Fabrication of Hollow Rigid Nanolattices via Two-Photon Lithography. Advanced Engineering Materials 2014, 16 (2), 184-189.
    32. Schaedler, T. A.; Jacobsen, A. J.; Carter, W. B., Toward Lighter, Stiffer Materials. Science 2013, 341 (6151), 1181.
    33. Schaedler, T. A.; Ro, C. J.; Sorensen, A. E.; Eckel, Z.; Yang, S. S.; Carter, W. B.; Jacobsen, A. J., Designing Metallic Microlattices for Energy Absorber Applications. Advanced Engineering Materials 2014, 16 (3), 276-283.
    34. Ullal, C. K.; Maldovan, M.; Thomas, E. L.; Chen, G.; Han, Y.-J.; Yang, S., Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures. Applied Physics Letters 2004, 84 (26), 5434-5436.
    35. Jang, J.-H.; Ullal, C. K.; Maldovan, M.; Gorishnyy, T.; Kooi, S.; Koh, C.; Thomas, E. L., 3D Micro- and Nanostructures via Interference Lithography. Advanced Functional Materials 2007, 17 (16), 3027-3041.
    36. Bauer, J.; Hengsbach, S.; Tesari, I.; Schwaiger, R.; Kraft, O., High-strength cellular ceramic composites with 3D microarchitecture. Proceedings of the National Academy of Sciences 2014, 111 (7), 2453.
    37. Lee, J.-H.; Wang, L.; Kooi, S.; Boyce, M. C.; Thomas, E. L., Enhanced Energy Dissipation in Periodic Epoxy Nanoframes. Nano Letters 2010, 10 (7), 2592-2597.
    38. Wang, L.; Lau, J.; Thomas, E. L.; Boyce, M. C., Co-Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation. Advanced Materials 2011, 23 (13), 1524-1529.
    39. Lee, J.-H.; Wang, L.; Boyce, M. C.; Thomas, E. L., Periodic Bicontinuous Composites for High Specific Energy Absorption. Nano Letters 2012, 12 (8), 4392-4396.
    40. .
    41. Whitesides, G. M.; Boncheva, M., Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proceedings of the National Academy of Sciences 2002, 99 (8), 4769.
    42. Whitesides George, M.; Grzybowski, B., Self-Assembly at All Scales. Science 2002, 295 (5564), 2418-2421.
    43. Gagneux, P., Protein Structure and Function. Journal of Heredity 2004, 95 (3), 274-274.
    44. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D., Periodic area-minimizing surfaces in block copolymers. Nature 1988, 334 (6183), 598-601.
    45. Bates, F. S.; Fredrickson, G. H., Block Copolymers—Designer Soft Materials. Physics Today 1999, 52 (2), 32-38.
    46. Bates, F. S.; Fredrickson, G. H., Block Copolymer Thermodynamics: Theory and Experiment. Annual Review of Physical Chemistry 1990, 41 (1), 525-557.
    47. Shen, H.; Eisenberg, A., Morphological Phase Diagram for a Ternary System of Block Copolymer PS310-b-PAA52/Dioxane/H2O. The Journal of Physical Chemistry B 1999, 103 (44), 9473-9487.
    48. Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J., Effect of arm number and arm molecular weight on the solid-state morphology of poly(styrene-isoprene) star block copolymers. Macromolecules 1986, 19 (1), 215-224.
    49. Grubbs, R. B.; Dean, J. M.; Broz, M. E.; Bates, F. S., Reactive Block Copolymers for Modification of Thermosetting Epoxy. Macromolecules 2000, 33 (26), 9522-9534.
    50. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J., The Gyroid: A New Equilibrium Morphology in Weakly Segregated Diblock Copolymers. Macromolecules 1994, 27 (15), 4063-4075.
    51. Hyde, S. T.; Schröder-Turk, G. E., Geometry of interfaces: topological complexity in biology and materials. Interface Focus 2012, 2 (5), 529-538.
    52. Anderson, D., PERIODIC SURFACES OF PRESCRIBED MEAN CURVATURE. Advance in Chemical Physics 1990, 77, 337.
    53. Ha, Y. H.; Vaia, R. A.; Lynn, W. F.; Costantino, J. P.; Shin, J.; Smith, A. B.; Matsudaira, P. T.; Thomas, E. L., Three-Dimensional Network Photonic Crystals via Cyclic Size Reduction/ Infiltration of Sea Urchin Exoskeleton. Advanced Materials 2004, 16 (13), 1091-1094.
    54. Lo, T.-Y.; Chao, C.-C.; Ho, R.-M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L., Phase Transitions of Polystyrene-b-poly(dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46 (18), 7513-7524.
    55. Georgopanos, P.; Lo, T.-Y.; Ho, R.-M.; Avgeropoulos, A., Synthesis, molecular characterization and self-assembly of (PS-b-PDMS)n type linear (n = 1, 2) and star (n = 3, 4) block copolymers. Polymer Chemistry 2017, 8 (5), 843-850.
    56. Chang, C.-Y.; Manesi, G.-M.; Yang, C.-Y.; Hung, Y.-C.; Yang, K.-C.; Chiu, P.-T.; Avgeropoulos, A.; Ho, R.-M., Mesoscale networks and corresponding transitions from self-assembly of block copolymers. Proceedings of the National Academy of Sciences 2021, 118 (11), e2022275118.
    57. Wang, Y.; Qin, Y.; Berger, A.; Yau, E.; He, C.; Zhang, L.; Gösele, U.; Knez, M.; Steinhart, M., Nanoscopic Morphologies in Block Copolymer Nanorods as Templates for Atomic-Layer Deposition of Semiconductors. Advanced Materials 2009, 21 (27), 2763-2766.
    58. Chiu, P.-T.; Yang, C.-Y.; Xie, Z.-H.; Chang, M.-Y.; Hung, Y.-C.; Ho, R.-M., Gold Nanohelices for Chiral Plasmonic Films by Templated Electroless Plating (Advanced Optical Materials 10/2021). Advanced Optical Materials 2021, 9 (10), 2170036.
    59. Wang, Y.; Gösele, U.; Steinhart, M., Mesoporous Block Copolymer Nanorods by Swelling-Induced Morphology Reconstruction. Nano Letters 2008, 8 (10), 3548-3553.
    60. She, M.-S.; Lo, T.-Y.; Ho, R.-M., Controlled Ordering of Block Copolymer Gyroid Thin Films by Solvent Annealing. Macromolecules 2014, 47 (1), 175-182.
    61. Hsueh, H.-Y.; Chen, H.-Y.; She, M.-S.; Chen, C.-K.; Ho, R.-M.; Gwo, S.; Hasegawa, H.; Thomas, E. L., Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating. Nano Letters 2010, 10 (12), 4994-5000.
    62. Marletta, A.; Gonçalves, D.; Oliveira Jr, O. N.; Faria, R. M.; Guimarães, F. E. G., Rapid Conversion of Poly(p-phenylenevinylene) Films at Low Temperatures. Advanced Materials 2000, 12 (1), 69-74.
    63. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P., Nanoscopic Templates from Oriented Block Copolymer Films. Advanced Materials 2000, 12 (11), 787-791.
    64. Hsueh, H.-Y.; Yao, C.-T.; Ho, R.-M., Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chemical Society Reviews 2015, 44 (7), 1974-2018.
    65. Wang, H.-F.; Yu, L.-H.; Wang, X.-B.; Ho, R.-M., A Facile Method To Fabricate Double Gyroid as a Polymer Template for Nanohybrids. Macromolecules 2014, 47 (22), 7993-8001.
    66. Crossland, E. J. W.; Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D. M.; Toombes, G. E. S.; Hillmyer, M. A.; Ludwigs, S.; Steiner, U.; Snaith, H. J., A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Letters 2009, 9 (8), 2807-2812.
    67. Yang, K.-C.; Yao, C.-T.; Huang, L.-Y.; Tsai, J.-C.; Hung, W.-S.; Hsueh, H.-Y.; Ho, R.-M., Single gyroid-structured metallic nanoporous spheres fabricated from double gyroid-forming block copolymers via templated electroless plating. NPG Asia Materials 2019, 11 (1), 9.
    68. Li, F.; Yao, X.; Wang, Z.; Xing, W.; Jin, W.; Huang, J.; Wang, Y., Highly Porous Metal Oxide Networks of Interconnected Nanotubes by Atomic Layer Deposition. Nano Letters 2012, 12 (9), 5033-5038.
    69. Kim, E.; Vaynzof, Y.; Sepe, A.; Guldin, S.; Scherer, M.; Cunha, P.; Roth, S. V.; Steiner, U., Gyroid-Structured 3D ZnO Networks Made by Atomic Layer Deposition. Advanced Functional Materials 2014, 24 (6), 863-872.
    70. Wang, X.-B.; Lin, T.-C.; Hsueh, H.-Y.; Lin, S.-C.; He, X.-D.; Ho, R.-M., Nanoporous Gyroid-Structured Epoxy from Block Copolymer Templates for High Protein Adsorbability. Langmuir 2016, 32 (25), 6419-6428.
    71. Crossland, E. J. W.; Ludwigs, S.; Hillmyer, M. A.; Steiner, U., Control of gyroid forming block copolymer templates: effects of an electric field and surface topography. Soft Matter 2010, 6 (3), 670-676.
    72. Wei, D.; Scherer, M. R. J.; Bower, C.; Andrew, P.; Ryhänen, T.; Steiner, U., A Nanostructured Electrochromic Supercapacitor. Nano Letters 2012, 12 (4), 1857-1862.
    73. Khaderi, S. N.; Scherer, M. R. J.; Hall, C. E.; Steiner, U.; Ramamurty, U.; Fleck, N. A.; Deshpande, V. S., The indentation response of Nickel nano double gyroid lattices. Extreme Mechanics Letters 2017, 10, 15-23.
    74. Dair, B. J.; Honeker, C. C.; Alward, D. B.; Avgeropoulos, A.; Hadjichristidis, N.; Fetters, L. J.; Capel, M.; Thomas, E. L., Mechanical Properties and Deformation Behavior of the Double Gyroid Phase in Unoriented Thermoplastic Elastomers. Macromolecules 1999, 32 (24), 8145-8152.
    75. Dair, B. J.; Avgeropoulos, A.; Hadjichristidis, N.; Thomas, E. L., Mechanical properties of the double gyroid phase in oriented thermoplastic elastomers. Journal of Materials Science 2000, 35 (20), 5207-5213.
    76. Mieszala, M.; Hasegawa, M.; Guillonneau, G.; Bauer, J.; Raghavan, R.; Frantz, C.; Kraft, O.; Mischler, S.; Michler, J.; Philippe, L., Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability. Small 2017, 13 (8), 1602514.
    77. Al-Ketan, O.; Rezgui, R.; Rowshan, R.; Du, H.; Fang, N. X.; Abu Al-Rub, R. K., Microarchitected Stretching-Dominated Mechanical Metamaterials with Minimal Surface Topologies. Advanced Engineering Materials 2018, 20 (9), 1800029.
    78. Khaderi, S. N.; Deshpande, V. S.; Fleck, N. A., The stiffness and strength of the gyroid lattice. International Journal of Solids and Structures 2014, 51 (23), 3866-3877.
    79. Shaw, S. J., Rubber modified epoxy resins. In Rubber Toughened Engineering Plastics, Collyer, A. A., Ed. Springer Netherlands: Dordrecht, 1994; pp 165-209.
    80. Bucknall, C. B., Rubber toughening. In The Physics of Glassy Polymers, Haward, R. N.; Young, R. J., Eds. Springer Netherlands: Dordrecht, 1997; pp 363-412.
    81. Dean, J. M.; Lipic, P. M.; Grubbs, R. B.; Cook, R. F.; Bates, F. S., Micellar structure and mechanical properties of block copolymer-modified epoxies. Journal of Polymer Science Part B: Polymer Physics 2001, 39 (23), 2996-3010.
    82. Mimura, K.; Ito, H.; Fujioka, H., Toughening of epoxy resin modified with in situ polymerized thermoplastic polymers. Polymer 2001, 42 (22), 9223-9233.
    83. Dean, J. M.; Grubbs, R. B.; Saad, W.; Cook, R. F.; Bates, F. S., Mechanical properties of block copolymer vesicle and micelle modified epoxies. Journal of Polymer Science Part B: Polymer Physics 2003, 41 (20), 2444-2456.
    84. Liu, J.; Sue, H.-J.; Thompson, Z. J.; Bates, F. S.; Dettloff, M.; Jacob, G.; Verghese, N.; Pham, H., Nanocavitation in Self-Assembled Amphiphilic Block Copolymer-Modified Epoxy. Macromolecules 2008, 41 (20), 7616-7624.
    85. Thomas, R.; Yumei, D.; Yuelong, H.; Le, Y.; Moldenaers, P.; Weimin, Y.; Czigany, T.; Thomas, S., Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 2008, 49 (1), 278-294.
    86. Thompson, Z. J.; Hillmyer, M. A.; Liu, J.; Sue, H.-J.; Dettloff, M.; Bates, F. S., Block Copolymer Toughened Epoxy: Role of Cross-Link Density. Macromolecules 2009, 42 (7), 2333-2335.
    87. Chen, J.; Kinloch, A. J.; Sprenger, S.; Taylor, A. C., The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polymer 2013, 54 (16), 4276-4289.
    88. Declet-Perez, C.; Francis, L. F.; Bates, F. S., Cavitation in Block Copolymer Modified Epoxy Revealed by In Situ Small-Angle X-Ray Scattering. ACS Macro Letters 2013, 2 (10), 939-943.
    89. Li, T.; He, S.; Stein, A.; Francis, L. F.; Bates, F. S., Synergistic Toughening of Epoxy Modified by Graphene and Block Copolymer Micelles. Macromolecules 2016, 49 (24), 9507-9520.
    90. Karak, N., Modification of Epoxies. In Sustainable Epoxy Thermosets and Nanocomposites, American Chemical Society: 2021; Vol. 1385, pp 37-68.
    91. Biener, J.; Hodge, A. M.; Hamza, A. V.; Hsiung, L. M.; Satcher, J. H., Nanoporous Au: A high yield strength material. Journal of Applied Physics 2004, 97 (2), 024301.
    92. Biener, J.; Hodge, A. M.; Hamza, A. V., Microscopic failure behavior of nanoporous gold. Applied Physics Letters 2005, 87 (12), 121908.
    93. Volkert, C. A.; Lilleodden, E. T.; Kramer, D.; Weissmüller, J., Approaching the theoretical strength in nanoporous Au. Applied Physics Letters 2006, 89 (6), 061920.

    QR CODE