研究生: |
溫健弘 Wen, Chien-Hong |
---|---|
論文名稱: |
Delivery Guaranteed Geographic Routing Protocols in 3D Wireless Sensor Networks 在三維無線感測網路中保證封包送達的繞徑協定 |
指導教授: |
蔡明哲
Tsai, Ming-Jer |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 31 |
中文關鍵詞: | 三維繞徑 、保證封包送達 |
外文關鍵詞: | 3D geographic routing, guarantee delivery |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Several geographic routing protocols are proposed for 3D wireless sensor networks due to a wide range of applications. Each of them, however, cannot guarantee packet delivery or demands a long routing path to turn around a hole. In this thesis, we first introduce a method of constructing a guide to the navigation on the surface of a hole. Subsequently, a geographic routing protocol (GGNG) that can always route a packet to turn around a hole with the help of the guide is proposed. GGNG guarantees packet delivery in 3D space. Simulations show that GGNG has a good performance in terms of the routing path while incurring moderate message overhead costs.
目前已經有許多在三維空間中的繞徑協定,然而這些繞徑協定通常都不能保證封包的送達或是需要較長的路徑為障礙物周遭無法直接轉送封包的感測器建立繞過障礙物的路線。在這篇論文中,我們首先提出了一種方法建立指南,為障礙物周遭的感測器進行導航,尋找正確的途徑。並且提出保證可以將封包送達的新繞徑協定GGNG作為繞送封包的方法。GGNG保證可在三維空間中將封包送達目的地,且經由實驗也證實了GGNG確實比其他的協定更加有效率的遞送封包,而僅只需要多耗費一些傳遞訊息的成本建立指南。
[1] Q. Fang, J. Gao, L. J. Guibas, V. de Silva, and L. Zhang, “GLIDER: Gradient landmark-based distributed routing for sensor networks,” in IEEE INFOCOM, 2005.
[2] A. Caruso, S. Chessa, S. De, and A. Urpi, “GPS free coordinate assignment and routing in wireless sensor networks,” in IEEE INFOCOM, 2005.
[3] A. Nguyen, N. Milosavljevic, Q. Fang, J. Gao, and L. J. Guibas, “Landmark selection and greedy landmark-descent routing for sensor networks,” in IEEE INFOCOM, 2007.
[4] J. Bruck, J. Gao, and A. A. Jiang, “MAP: Medial axis based geometric routing in sensor networks,” in IEEE MOBICOM, 2005.
[5] M.-J. Tsai, H.-Y. Yang, and W.-Q. Huang, “Axis-based virtual coordinate assignment protocol and delivery-guaranteed routing protocol in wireless sensor networks,” in IEEE INFOCOM, 2007.
[6] M.-J. Tsai, F.-R. Wang, H.-Y. Yang, and Y.-P. Cheng, “VirtualFace: An algorithm to guarantee packet delivery of virtual-coordinate-based routing protocols in wireless sensor networks,” in IEEE INFOCOM, 2009.
[7] B. Karp and H. T. Kung, “GPSR: Greedy perimeter stateless routing for wireless networks,” in ACM MobiCom, 2000.
[8] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guarantee delivery in ad hoc networks,” ACM Wireless Networks, vol. 7, pp. 609–616, 2001.
[9] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-hoc routing: Of theory and practice,” in ACM PODC, 2003.
[10] H. Frey and I. Stojmenovic, “On delivery guarantees of face and combined greedy-face routing in ad hoc and sensor networks,” in ACM MobiCom, 2006.
[11] A. Abdallah, T. Fevens, and J. Opatrny, “Power-aware 3d position-based routing algorithms for ad hoc networks,” in IEEE ICC, 2007.
[12] T. Fevens, G. Kao, and J. Opatrny, “Position-based routing on 3-d geometric graphs in mobile ad hoc networks,” in CCCG, 2005.
[13] R. Flury and R. Wattenhofer, “Randomized 3d geographic routing,” in IEEE INFOCOM, 2008.
[14] C. Liu and J. Wu, “Efficient geometric routing in three dimensional ad hoc networks,” in IEEE INFOCOM, 2009.
[15] K. Daniels, V. Milenkovic, and D. Roth, “Finding the largest area axis-parallel rectangle in a polygon,” Computational Geometry, vol. 7, pp. 125–148, 1997.
[16] D. Tschopp, S. Diggavi, M. Grossglauser, and J. Widmer, “Robust geo-routing on embeddings of dynamic wireless networks,” in IEEE INFOCOM, 2007.
[17] W. Lou and J.Wu, “Toward broadcast reliability in mobile ad hoc networks with double coverage,” IEEE Transactions on Mobile Computing, vol. 6, pp. 148–163, 2007.