簡易檢索 / 詳目顯示

研究生: 陳三權
San-Chuan Chen
論文名稱: 65奈米金氧半元件特性與分析
Characterization and Analysis for 65-nm RF MOSFETs
指導教授: 徐碩鴻
Shuo-Hung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 65奈米元件最佳化
外文關鍵詞: 65nm, device, optimization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因為三五族元件具有高電子遷移率以及大電流承載能力的特性,所以早期高頻元件以及電路大多使用三五族製程來設計。但是,三五族製程的缺點,除了價格昂貴之外,在製程上不容易和後段區塊做整合也是問題之ㄧ。所以,在CMOS製程不斷進步,其高頻特性持續提升的情況之下,使得CMOS在微波頻段的應用範圍越來越廣。在諸多文獻的模擬結果中可以發現,當製程越是進步,則MOS高頻特性受到佈局方式的影響越是明顯。因此,本研究設計一系列不同佈局方式的65-nm射頻元件,希望透過分析不同佈局方式元件的高頻參數,藉以完成改善MOS高頻特性之目的。量測結果顯示,減少元件內部的金屬層數確實可以明顯降低寄生電容和寄生電阻。相對於標準元件﹙Device I﹚而言,寄生電容最佳化後之元件﹙Device II﹚,其f T和fmax分別改善了約15 %和19 %。而寄生電容和寄生電阻同時最佳化後的元件﹙Device III﹚,其f T和fmax更是改善了大約21 %。而為了能夠將量測結果作量化分析,因此本論文利用S參數量測結果萃取出寄生電容Cgs、Cgd以及閘極電阻Rg,結果顯示,相對於標準佈局元件而言,寄生電容和寄生電阻同時最佳化後之元件,其Cgs、Cgd分別減少了大約11 %及23 %。由此可見,元件內部的寄生電容和寄生電阻確實會對元件高頻特性造成相當程度的影響。
    在過去低頻雜訊模型相關論文當中,大多著重於物理層面的探討與研究,而對於實際應用時的雜訊參數萃取卻無相當仔細的討論與介紹。因此本論文在最後的段落當中,將首先獨力發展出一套有效的BSIM4低頻雜訊參數萃取技術,說明萃取雜訊參數的條件與過程。緊接著,為了更加精確描述低頻雜訊與電流之間的關係,本研究更是首度發展出電流校正技術,藉此進一步修正電流項次,使得模型預測值更趨近於量測結果。最後,本論文將在BSIM4模型中加入雜訊變異項,用以模擬實際雜訊的變異範圍,促使雜訊預測範圍更為精準。


    With the growing popularity of portable wireless units, the consumer and electronic industry demand for high performance, high integration, and low cost transistors. The RF devices and integrated circuits were dominated by III-V based technologies owning to their high-speed characteristics. Recently, CMOS technology keeps improving and the cut-off frequency (f T) and maximum oscillation frequency (fmax) have both reached above 100 GHz. These advanced transistors have made it possible for using CMOS technology for microwave applications.
    In this study, we focused on layout design of 65-nm n-MOSFETs for improved high-frequency device characteristics. By changing the inner wire, the parasitic gate-source capacitance Cgs and gate-drain capacitances Cgd can be reduced significantly. The parasitic source resistance also becomes smaller in the proposed design. Compared with the conventional multi-finger design provided by foundry, the devices with optimized gate finger layout (Device II) present ~15 % and ~19 % improvement on f T and fmax. With the further optimized parasitic resistances by using less metal layer (Device III), the f T and fmax shows ~21 % and ~22 % enhancement. For quantitatively investigation, the Cgd and Cgs are extracted from S-parameters. The measured results indicate the Cgd and Cgs reduced up to ~23 % and ~11 % in the latter case. The flicker noise modeling is also investigated for the devices. The noise variation and current calibration technique are incorporated for a more accurate flicker noise model.

    致謝 2 ABSTRACT 3 摘要 4 目錄 5 圖目錄 7 表目錄 9 第一章 緒論 10 1.1 研究動機 10 1.2 論文架構 12 參考文獻 13 第二章 基本原理簡介 14 2.1 Y參數分析 14 2.1.1 截止頻率 19 2.1.2 最大振盪頻率 21 2.1.3 元件尺寸與偏壓對截止頻率與最大振盪頻率的關係 23 2.2 高頻雜訊 25 2.2.1 電晶體中的熱雜訊 25 2.2.2 解析型高頻雜訊模型 28 2.2.3 元件尺寸與偏壓對高頻雜訊的關係 30 2.3 低頻雜訊 33 2.3.1 載子擾動模型 33 2.3.2 遷移率擾動模型 35 2.3.3 BSIM模型 36 參考文獻 39 第三章 元件設計與量測系統架設 41 3.1 元件設計 41 3.1.1 元件內部金屬牽線最佳化設計 43 3.1.2 閘極與汲極間距對寄生電容的影響 46 3.1.3 元件測試結構設計 46 3.2 量測系統架設 49 3.2.1 S參數量測系統 49 3.2.2 高頻雜訊量測系統 51 3.2.3 低頻雜訊量測系統 52 參考文獻 54 第四章 量測結果與分析 55 4.1 元件內部金屬牽線最佳化之結果討論 55 4.1.1 電容參數萃取 55 4.1.2 截止頻率 57 4.1.3 最大振盪頻率 59 4.1.4 高頻雜訊 60 4.2 閘極與汲極間距對寄生電容的影響 62 4.3 低頻雜訊模型 64 4.3.1 低頻雜訊模型 64 4.3.2 電流校正技術之低頻雜訊模型 66 4.3.3 雜訊變異模型 71 第五章 結論與未來展望 73 5.1 結論 73 5.2 未來研究方向 74

    Chapter 1
    [1] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Millimeter- Wave CMOS design,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan., 2005.
    [2] L. F. Tiemeijer, H. M. J. Boots, R. J. Havens, A. J. Scholten, P. H. W. de Vreede, P. H. Woerlee, A. Heringa, and D. B. M. Klaassen, “A record high 150 GHz fmax realized at 0.18 □m gate length in an industrial RF-CMOS technology,” in IEDM Tech. Dig., pp. 223-226, 2001.
    [3] E. Morifuji, H. S. Momose, T. Ohguro, T. Yoshitomi, H. Kimijima, F. Matsuoka, M. Kinugawa, Y.Katsumata, and H. Iwai, “Future perspective and scaling down roadmap for RF CMOS,” in VLSI Symp. Tech. Dig., pp. 165-166, 1999.
    [4] T. Tatsumi, “Geometry optimization of sub-100nm node RF CMOS utilizing three dimensional TCAD simulation,” in Proc. ESSDERC, pp. 319-322, 2006.
    [5] A. Nakamura, N. Yoshikawa, T. Miyazako, T. Oishi, H. Ammo, and K. Takeshita, “Layout optimization of RF CMOS in the 90nm generation by a physics-based model including the multi-finger wiring effect,” in IEEE RFIC Symp. Dig., Jun. 2006.
    [6] B. Heydari, M. Bohsali, E. Adabi, and A. M. Niknejad, “Millimeter-wave devices and circuit blocks up to 104 GHz in 90 nm CMOS,” IEEE J. of Solid-State Circuits, vol. 42, no. 12, pp. 2893-2903, December, 2007.
    Chapter 2
    [1] Y. T. Huang, “RF MOSFET substrate modeling and a new parameter direct extraction method,” Master thesis, National Tsing Hua University, Hsinchu, Taiwan, 2005.
    [2] I. Kwon, M. Je, K. Lee, and H. Shin, “A simple and analytical parameter-extraction method of a microwave MOSFET,” in IEEE Trans. Microwave Theory Tech., vol. 50, pp. 1503-1509, June 2002.
    [3] Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice-Hall, 1997.
    [4] R. Spence, Linear Active Networks, Wiley, 1970.
    [5] S. Asgaran, M. J. Deen, and C. H. Chen, “Analytical modeling of MOSFETs channel noise and noise parameters,” in IEEE Trans. Electron Devices, vol. 51, pp. 2109-2114, December 2004.
    [6] H. Y. Yang, “Analysis of high frequency noise in advanced MOS transistors,” Master thesis, National Tsing Hua University, Hsinchu, Taiwan, 2007.
    [7] T. Tatsumi, “Geometry optimization of sub-100nm node RF CMOS utilizing three dimensional TCAD simulation,” in IEEE Solid-State Device Research Conference, pp. 319-322, Sept. 2006.
    [8] E. Simoen and C. Claeys, “On the flicker noise in submicron silicon MOSFETs,” Solid-State Electronis, 43, pp. 865-882, 1999.
    [9] A. L. McWhorter, Semiconductor surface physics. Philadelphia: University of Pennsylvania Press, 1957.
    [10] F. N. Hooge, “1/f noise is no surface effect,” Appl. Physs. Lett. vol. 29A, pp. 139, 1969.
    [11] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “A unified model for the flicker noise in Metal-Oxide-Semiconductor Field-Effect Transistors,” in IEEE Trans. Electron Devices, vol. 37, pp. 654-665, March 1990.
    [12] [Online]. Available: http://www-device.eecs.berkeley.edu.
    [13] J. C. Vildeuil, M. Velanza, and D. Rigaud, “Extraction of the BSIM3 1/f noise parameters in CMOS transistors,” Microelectron. J., 30, pp. 199-205, 1999.
    Chapter 3
    [1] L. F. Tiemeijer and R. J. Havens, “A calibrated lumped-element de-embedding technique for on-wafer RF characterization of high-quality inductors and high-speed transistors,” in IEEE Trans. Electron Devices, vol. 50, pp. 822-829, March 2003.
    [2] A. Blaum, O. Pilloud, G. Scalea, J. Victory and F. Sischka, “A new robust on-wafer 1/f noise measurement and characterization system,” in Proc. IEEE Int. Conf. Microelectron. Test Struct., vol. 14, pp. 125-130, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE