研究生: |
洪常瑋 Hung, Chang Wei |
---|---|
論文名稱: |
藉由瞬態事件組合法擬合穩態現象並應用於細菌視紫質之光誘發質子幫浦反應 Analyzing a steady-state phenomenon using an ensemble of sequential transient events: A proof of concept on photocurrent due to bacteriorhodopsin proton pump upon continuous photoexcitation |
指導教授: |
朱立岡
Chu, Li Kang |
口試委員: |
洪嘉呈
何美霖 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 細菌視紫質 、光電流 、連續光源 |
外文關鍵詞: | bacteriorhodopsin, photocurrent, continuous wave |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細菌視紫質為一存在於嗜鹽古生菌Halobacterium salinarum細胞膜上的跨膜蛋白,其受光激發後會進行光迴圈反應,在細胞膜內外側產生氫離子濃度梯度,具備質子幫浦的功能,而此古生菌得利用此化學勢位合成生物生存所需的三磷酸腺苷。先前不乏以電化學方法對細菌視紫質進行質子幫浦的研究,但分析方法除了涵蓋複雜的假設外,亦隨樣品製程方式不同而有差異。本論文利用瞬態可見光吸收光譜技術以及電化學裝置觀察pH 6.3-8.1之間,紫膜溶液中細菌視紫質基態回復的速率以及質子幫浦行為,並建立一個概念簡單的動力學模型描述以連續光激發細菌視紫質所觀察到的電流訊號。
由於細菌視紫質其光誘發質子傳遞的特性,電化學裝置可偵測到溶液中瞬間質子濃度變化。在連續光源激發下,紫膜溶液產生的質子濃度差可由一系列的瞬態氫離子濃度差擬合。當細菌視紫質被光激發後須完成光迴圈反應才能回到基態再次受激發,因此隨著時間有效細菌視紫質濃度逐漸減少,瞬態氫離子濃度差之振幅也隨之遞減。吾人使用瞬態可見光吸收光譜觀察細菌視紫質光迴圈完成之速率並搭配實驗條件的評估,判斷細菌視紫質隨時間遞減的程度。接著以累加一系列瞬態氫離子濃度差的方式,得到氫離子隨時間的總濃度差,最後將氫離子總濃度差微分後可得光電流。吾人利用上述概念所建構之動力學模型適解pH 6.3-8.1範圍內的光電流訊號,不僅得到與實驗相似的波形,其質子幫浦動力學參數也與文獻中Kuo及Chu利用脈衝光激發之電流模型所獲得結果一致。故吾人利用本實驗以細菌視紫質為例,證明利用一連串瞬態事件的組合可用於分析連續激發下的現象。
The proton pump activity of bacteriorhodopsin in aqueous solution upon excitation with modulated continuous light was monitored electrochemically and analyzed by superimposing a series of transient proton translocation events Hi+(t). An evolution function , including a decay and a stationary offset, was introduced to weight the contribution of the individual transient events evolving with time in the envelope of the steady-state event. The evolution of the total proton concentration can be treated as an ensemble of weighted sequential transient events, , and the temporal profile of the photocurrent is derived by differentiating the proton concentration with respect to time, . The temporal profiles of the bacteriorhodopsin photocurrent in pH range 6.3–8.1 were analyzed using a well-defined kinetics model and restricted mathematical formulization, and fitted temporal behaviors agreed with the observations. This successful proof-of-concept study on analyzing a steady-state phenomenon using an ensemble of sequential transient events can be generalized to quantify other phenomena upon continuous stimulation, such as estimation of light-driven ion pump activities of the photosynthetic proteins upon illumination.
[1] Vsevolodov, N. N., Biomolecular Electronics: An Introduction Via Photosensitive Proteins. Birkhauser Boston: 1998; p 3.
[2] Stoeckenius, W.; Kunau, W. H. J. Cell Biol. 1967, 34, 365–393.
[3] Lanyi, J. K., Bacteriorhodopsin, Chemistry of. In Wiley Encyclopedia of Chemical Biology, Begley, T. P., Ed. John Wiley & Sons, Inc.: 2007.
[4] Lanyi, J. K. Biochim. Biolphys. Acta 2006, 1757, 1012–1018.
[5] Stoeckenius, W.; Rowen, R. J. Cell Biol. 1967, 34, 365–393.
[6] Oesterhelt, D.; Stoeckenius, W. Nat. New. Biol. 1971, 233, 149–152.
[7] Oesterhelt, D.; Stoeckenius, W. Proc. Nat. Acad. Sci. U.S.A. 1973, 70, 2853–2857.
[8] Stoeckenius, W.; Bogomolni, R. A. Annu. Rev. Biochem. 1982, 51, 587–616.
[9] Smith, S. O.; Pardoen, J. A.; Mulder, P. P. J.; Curry, B.; Lugtenburg, J.; Mathies, R. A. Biochemistry 1983, 22, 6141–6148.
[10] Sharkov, A. V.; Pakulev, A. V.; Chekalin, S. V.; Matveetz, Y. A. Biochim. Biophys. Acta 1985, 808, 94–102.
[11] Gerwert, K.; Souvignier, G.; Hess, B. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 9774–9778.
[12] Lanyi, J. K. Annu. Rev. Physiol. 2004, 66, 665–688.
[13] Garczarek, F.; Gerwert, K. Nature 2006, 439, 109–112.
[14] Mathies, R.; Brito Cruz, C.; Pollard, W.; Shank, C. Science 1988, 240, 777–779.
[15] Neutze, R.; Pebay-Peyroula, E.; Edman, K.; Royant, A.; Navarro, J.; Landau, E. M. Biochim. Biophys. Acta 2002, 1565, 144–167.
[16] Mathies, R.; Brito Cruz, C.; Pollard, W.; Shunk, C. Science 1988, 240, 777–779.
[17] Rothschild, K. J.; Zagaeski, M.; Cantore, W. A. Biochem. Biophys. Res. Commun. 1981, 103, 483–489.
[18] Degroot, H. J. M.; Harbison, G. S.; Herzfeld, J.; Griffin, R. G. Biochemistry 1989, 28, 3346–3353.
[19] Henderson, R.; Unwin, P. N. T. Nature 1975, 257, 28–32.
[20] Blaurock, A. E. J. Mol. Biol. 1975, 93, 139–158.
[21] Khorana, H. G.; Gerber, G. E.; Herlihy, W. C.; Gray, C. P.; Anderegg, R. J.; Nihei, K.; Biemann, K. Proc. Natl. Acad. Sci. USA 1979, 76, 5046–5050.
[22] Chen, Z. P.; Birge, R. R. Trends Biotechnol. 1993, 11, 292–300.
[23] Vsevolodov, N. N.; Ivanitsky, G. R. Biofizika 1985, 30, 883–887.
[24] Brauchle, C.; Hampp, N.; Oesterhelt, D. Adv. Mater. 1991, 3, 420–428.
[25] Zhao,S.; Cunha, C.; Zhang, F.; Liu, Q.; Gloss, B.; Deisseroth, K.; Augustine, G.J.; Feng, G. Brain Cell Biol. 2008, 36, 141–154.
[26] Zhang, F.; Wang, L.P.; Boyden, E. S.; Deisseroth, K. Nat. Methods 2006, 3, 785–792.
[27] Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Nat. Neurosci. 2005, 8, 1263–1268.
[28] Deisseroth, K. Nat. Methods 2011, 8, 26–29.
[29] Miyasaka, T.; Koyama, K. Thin Solid Films 1992, 210, 146–149.
[30] Koyama, K.; Yamaguchi, N.; Miyasaka, T. Science 1994, 265, 762–765.
[31] Keszthelyi, L. Biochim. Biophys. Acta 1980, 598, 429–436.
[32] Keszthelyi, L.; Ormos, P. FEBS Lett. 1980, 109, 189–193.
[33] Wang, J. P.; Yoo, S. K.; Song, L.; El-Sayed, M. A. J. Phys. Chem. B 1997, 101, 3420–3423.
[34] Wang, J. P.; Song, L.; Yoo, S. K.; El-Sayed, M. A. J. Phys. Chem. B 1997, 101, 10599–10604.
[35] Chu, L. K.; Yen, C. W.; El-Sayed, M. A. Biosens. Bioelectro. 2010, 26, 620–626.
[36] Trissl, H. W.; Montal, M. Nature 1977, 266, 655–657.
[37] Grzesiek, S.; Dencher, N. A. FEBS Lett. 1986, 208, 337–342.
[38] Heberle J., Riesle J., Thiedemann G., Oesterhelt D., Dencher N.A. Nature 1994, 370, 379–382.
[39] Scherrer, P.; Alexiev, U.; Marti, T.; Khorana, H. G.; Heyn, M. P. Biochemistry 1994, 33, 13684–13692.
[40] Drachev, L. A.; Kaulen, A. D.; Skulachev, V. P. FEBS Lett. 1978, 87, 161–167.
[41] Robertson, B.; Lukashev, E. P. Biophys. J. 1995, 68, 1507–1517.
[42] Miyasaka, T.; Koyama, K.; Itoh, I. Science 1992, 255, 342–344.
[43] Braun, D.; Dencher, N. A.; Fahr, A.; Laindau, M.; Heyn, M. P. Biophys. J. 1988, 53, 617–621.
[44] Keszthelyi, L.; Ormos., P. Biophys. Chem. 1983, 18, 397–405.
[45] Hong, F. T. Prog. Surf. Sci.1999, 62, 1–237.
[46] Hong, F. T. Biosystems 1986, 19, 223–236.
[47] Miyazaki, S.; Matsumoto, M.; Brier, S. B.; Higaki, T.; Yamada, T.; Okamoto, T.; Ueno, H.; Toyabe, S.; Muneyuki, E. Eur. Biophys. J. Biophys. Lett. 2013, 42, 257–265.
[48] Hong, F. T. Photochem. Photobiol. 1976, 24, 155–189.
[49] Hong, F. T. Mater. Sci. Eng. C 1997, 4, 267–268.
[50] Birge, R. R. Annu. Rev. Biophys. Bioeng. 1981, 10, 315–354.
[51] Leucke, H.; Schobert, B.; Richter, H. T.; Cartailler, J. P.; Lanyi, J. K. J.Mol. Biol. 1999, 291, 899–911.
[52] Blaurock, A. E.; Stoeckenius, W. Nat. New. Biol. 1971, 233, 152–155.
[53] Henderson, R. J. Mol. Biol. 1975, 93, 123–138.
[54] Mukhopadhyay, A. K.; Bose, S.; Hendler, R. W. Biochemistry 1994, 33, 10889–10895.
[55] Becher, B.; Tokunaga, F.; Ebrey, T. G. Biochemistry 1978, 17, 2293–2300.
[56] Kalisky, O.; Feitelson, J.; Ottolenghi, M. Biochemistry 1981, 20, 205–209.
[57] Rehorek, M.; Heyn, M. P. Biochemistry 1979, 18, 4977–4983.
[58] Birge, R. R.; Schulten, K.; Karplus, M. Chem. Phys. Lett. 1975, 31, 451–454.
[59] Balashov, S. P.; Imasheva, E. S.; Govindjee, R.; Ebrey, T. G. Biophys. J. 1996, 70, 473–481.
[60] Lozier, R. H.; Bogomolni, R. A.; Stoecknius, W. Biophys. J. 1975, 15, 955–962.
[61] Stoeckenius, W.; Lozier, R. H. J. Supramol. Struct. 1974, 2, 769–74.
[62] Scherrer, P.; Mathew, M. K.; Sperling, W.; Stoeckenius, W. Biochemistry 1989, 28, 829–834.
[63] Bennett, J. A.; Birge, R. R. J. Chem. Phys. 1980, 73, 4234–4246.
[64] Lanyi, J. K. J. Struct. Biol. 1998, 124, 164–178.
[65] Gergely, C.; Zimányi, L.; Váró, G. J. Phys. Chem. B, 1997, 101, 9390–9395.
[66] Harbison, G. S.; Mulder, P. P. J.; Pardoen, H.; Lugtenburg, J.; Herzfeld, J.; Griffin, R. G. J. Am. Chem. Soc. 1985, 107, 4810–4816.
[67] Wada, M.; Sakurai, M.; Inoue, Y.; Tamura, Y.; Watanabe, Y. J. Am. Chem. Soc. 1994, 116, 1537–1545.
[68] Schobert, B.; Cupp-Vickery, J.; Hornak, V.; Smith, S. O.; Lanyi, J. L. J. Mol. Biol. 2002, 321, 715–726.
[69] Beppu, Y.; Kakitani, T. Photochem. Photobiol. 1994, 59, 660–669.
[70] Birge, R. R.; Gillespie, N. B.; Izaguirre, E.W.; Kusnetzow, A.; Lawrence, A. F.; Singh, D.; Song, Q. W.; Schmidt, E.; Stuart, J. A.; Seetharaman, S.; Wise, K. J. J. Phys. Chem. B 1999, 103, 10746–10766.
[71] Richter, H. T.; Needleman, R.; Kandori, H.; Maeda, A.; Lanyi, J. K. Biochemistry 1996, 35, 15461–15466.
[72] Lanyi, L. K. Biochem. Biophys. Acta 1993, 1183, 241–261.
[73] Zimányi, L.; Váró, G., Chang, M.; Ni, B.; Needleman, R.; Lanyi. J. K. Biochemistry 1992, 31, 8535–8543.
[74] Morgan, J. E.; Vakkasoglu, A. S.; Lanyi, J. K.; Gennis, R. B.; Maeda, A. Biochemistry 2010, 49, 3273–3281.
[75] Lanyi, J. K. A Structure View of Proton Transfer by Bacteriorhodopsin. In Biophysical and Structural Aspects of Bioenergetics, Wikstrom, M., Ed. The Royal Society of Chemistry: 2005; pp 227–248.
[76] Hendler, R. W.; Dracheva, S. Biochemistry-Moscow 2001, 66, 1311–1314.
[77] Sternberg, B.; L'Hostis, C.; Whiteway, C. A.; Watts, A. Biochim. Biophys. Acta 1992, 1108, 21–30.
[78] Joshi, M. K.; Dracheva, S.; Mukhopadhyay, A. K.; Bose, S.; Hendler, R. W. Biochemistry 1998, 37, 14463–14470.
[79] Hendler, R. W.; Barnett, S. M.; Dracheva, S.; Bose, S.; Levin, I. W. Eur. J. Biochem. 2003, 270, 1920–1925.
[80] Heberle, J. Biochim. Biophys. Acta 2000, 1458, 135–147.
[81] Mowery, P. C.; Lozier, R. H.; Chae, Q.; Tseng, Y. W.; Tayor, M.; Stoeckenius, W. Biochemistry 1979, 18, 4100–4107.
[82] Subramaniam, S.; Marti, T.; Khorana, H. G. Proc. Nat. Acad. Sci. U. S. A. 1990, 87, 1013–1017.
[83] Balashov, S. P. Biochim. Biophys. Acta 2000, 1460, 75–94.
[84] Ludmann, K.; Gergely, C.;Váró, G. Biophys. J. 1998, 75, 3110–3119.
[85] Váró, G.; Lanyi, J. K. Biophys. J. 1989, 56, 1143–1151.
[86] Bressler, S.; Friedman, N.; Li, Q.; Ottolenghi, M.; Saha, C.; Sheves, M. Biochemistry 1999, 38, 2018–2025.
[87] Liu, S. Y.; Govindjee, R.; Ebrey, T. G. Biophys. J. 1995, 68, 1507–1517.
[88] Okajima, T. L.; Hong, F. T. Biophys. J. 1986, 50, 901–912.
[89] Simmeth, R.; Rayfield, G. W. Biophys. J. 1990, 57, 1099–1101.
[90] Lu, T.; Li, B. F.; Jiang, L; Rothe, U.; Bakowsky, U. J. Chem. Soc.-Faraday Trans. 1998, 94, 79–81.
[91] Tamogami, J.; Kikukawa, T.; Miyauchi, S.; Muneyuki, E.; Kamo, N. Photochem. Photobiol. 2009, 85, 578–589.
[92] Ormos, P.; Hristova, S.; Keszthelyi, L. Biochim. Biophys. Acta 1985, 809, 181–186.
[93] Liu, S. Y. Biophys. J. 1990, 57, 943–950.
[94] Kuo, C. L.; Chu, L. K. Bioelectrochem. 2014, 99, 1–7.
[95] Tkachenko, N. V., Steady State Absorption Spectroscopy. In Optical Spectroscopy: Methods and Instrumentations, Elservier Science: 2006; p 90.
[96] Tkachenko, N. V., Flashphotolysis. In Optical Spectroscopy: Methods and Instrumentations, Elservier Science: 2006; p 130.
[97] Oesterhelt, D.; Stoeckenius, W. Methods Enzym. 1974, 31, 667–678.
[98] USB Optical Bench Options
http:// www.oceanoptics.com/products/benchoptions_usb4.asp
[99] 才富國; 朱立岡. 嗜鹽古細菌H. marismortui之雙細菌視紫質系統的光化學反應–HmbRⅠ與HmbRⅡ. 國立清華大學, 新竹市, 2014.
[100] Rohr, M.; Gäertner, W.;Schweitzer, G.;Holzwarth, A. R.; Braslavsky, S. E. J. Phys. Chem. 1992, 96, 6055–6061.
[101] Birgham, E. O. The Fast Fourier Transform, Prentice Hall: 1974.