研究生: |
曾柏彥 Tseng, Po-Yan |
---|---|
論文名稱: |
暗物質有效作用力的總體限制 Global Constraints on Effective Dark Matter Interactions |
指導教授: |
張敬民
Cheung, Kingman |
口試委員: |
張敬民
Cheung, Kingman 朱創新 Chu, Chong-Sun 耿朝強 Geng, Chao-Qiang 張維甫 Chang, We-Fu 李湘楠 Li, Hsiang-nan 侯維恕 Hou, Wei-Shu 阮自強 Yuan, Tzu-Chiang 蔣正偉 Chiang, Cheng-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 144 |
中文關鍵詞: | 暗物質 、有效作用力 、實驗 、限制 |
外文關鍵詞: | effective interaction, PAMELA, Fermi-LAT, antiproton, anti-matter, XENON100 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有效作用力近似的方法可以描述自旋為0或1/2暗物質和標準模型粒子的相互作用力。有效作用力近似適用於某些理論模型,這些模型中的作用力介質必須有相對較重的質量。另外,質量輕且具有電偶極或磁偶極的暗物質可以用來解釋CoGeNT、DAMA和CRESST實驗中觀測到的事件數大於背景所給的預測的結果,且減弱XENON100所給的限制。這些上述所介紹的暗物質的影響會在本文詳細討論。例如,暗物質和原子核的散射節面對於直接量測實驗、暗物質在對撞機中的產生節面、暗物質互相湮滅率對於間接量測實驗、和暗物質在太陽中的捕捉率與湮滅率對於太陽微中子實驗。在這份文章中,上述暗物質的作用力強度將會被各類的暗物質實驗所限制並且給出上限或下限的大小。
The effective interaction approach can describe the interaction between spin 0 and 1/2 dark matter and standard-model particles.
The effective operator approach can be applied for those models in which the mass of the exchange force mediator are heavy.
A light dark matter possess the magnetic or electric
dipole moment can explain the event excess in the CoGeNT, DAMA, and CRESST, and mitigate the constraint from XENON100 due to the divergence of the dark matter-nucleus cross section at the low energy.
The effects of these dark matter are studied.
The dark matter-nucleus cross section for direct detection, the dark matter production cross section at the hardron
colliders, the dark matter annihilation rate for indirect detection, and the
dark matter capture and annihilation rate at Sun for solar neutrino experiments are considered in the contents.
The interaction strengths of these dark matter have been constrained by the many sorts of dark matter experiments,
and the limits for the interaction strengths are given in this work.
[1] "http://en.wikipedia.org/wiki/Dark matter."
[2] E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 192, 18 (2011) [arXiv:1001.4538 [astro-ph.CO]]
[3] G. Bertone, D. Hooper and J. Silk, \Particle dark matter: Evidence, candidates and constraints," Phys. Rept. 405, 279 (2005) [arXiv:hepph/ 0404175].
[4] Kingman Cheung, Po-Yan Tseng, Yue-Lin S. Tsai, Tzu-Chiang Yuan, "Global Constraints on Eective Dark Matter Interactions: Relic Density, Direct Detection, Indirect Detection, and Collider," JCAP 1205 (2012) 001 [arXiv:hep-ph/1201.3402].
[5] IceCube Collaboration, "Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors," [arXiv:1112.1840 [astro-ph.HE]].
[6] Rolf Kappl, Martin Wolfgang Winkler, "New Limits on Dark
Matter from Super-Kamiokande," Nucl.Phys. B850 (2011) 505-521,[arXiv:1104.0679 [hep-ph]].
[7] Super-Kamiokande Collaboration (T. Tanaka (Nagoya U.) et al.), "An Indirect Search for WIMPs in the Sun using 3109.6 days of upwardgoing muons in Super-Kamiokande," Astrophys.J. 742 (2011) 78, [arXiv:1108.3384 [astro-ph.HE]].
[8] V. Barger, Y. Gao, D. Marfatia, "Dark matter at DeepCore and Ice-Cube," Phys.Rev. D83 (2011) 055012, [arXiv:1101.4410 [hep-ph]].
[9] http://www.sns.ias.edu/ jnb/
[10] Fermi LAT Collaboration (M. Ackermann al.), "Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope," Phys.Rev.Lett. 108 (2012) 011103, [arXiv:1109.0521 [astro-ph.HE]].
[11] Fermi-LAT Collaboration (A.A. Abdo al.), "The Spectrum of the Isotropic Diuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data," Phys.Rev.Lett. 104 (2010) 101101, [arXiv:1002.3603 [astro-ph.HE]].
[12] LAT Collaboration (M. Ackermann al.), "Fermi LAT Search for Dark Matter in Gamma-ray Lines and the Inclusive Photon Spectrum," Phys.Rev. D86 (2012) 022002, [arXiv:1205.2739 [astro-ph.HE]].
[13] Fermi-LAT Collaboration(M. Ackermannet al.), "Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope," Phys.Rev.Lett. 107 (2011) 241302, [arXiv:1108.3546 [astro-ph.HE]].
[14] PAMELA Collaboration (Oscar Adriani et al.), "An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV," Nature 458 (2009) 607-609, [arXiv:0810.4995 [astro-ph]].
[15] PAMELA Collaboration (O. Adriani) et al.), "PAMELA results on the cosmic-ray antiproton
flux from 60 MeV to 180 GeV in kinetic energy,"
Phys.Rev.Lett. 105 (2010) 121101, [arXiv:1007.0821 [astro-ph.HE]].
[16] Alejandro Ibarra, Sebastian Wild, "Prospects of antideuteron detection from dark matter annihilations or decays at AMS-02 and GAPS,"
[arXiv:1209.5539 [hep-ph]].
[17] Alejandro Ibarra, Sebastian Wild, "Prospects of antideuteron detection from dark matter annihilations or decays at AMS-02 and GAPS," JCAP 1302 (2013) 021 [arXiv:1209.5539 [hep-ph]].
[18] http://www.ams02.org/
[19] Kingman Cheung , Po-Yan Tseng, Tzu-Chiang Yuan, "Double-action dark matter, PAMELA and ATIC," Phys.Lett. B678 (2009) 293-300, [arXiv:0902.4035 [hep-ph]].
[20] Paolo GONDOLO, Graciela GELMINI, "Cosmic Abundances of Stable
Particles: Improved Analysis," Nuclear Physics B360 (1991) 145-179.
[21] DAMA Collaboration (R. Bernabei et al.), "First results from DAMA/LIBRA and the combined results with DAMA/NaI,"
Eur.Phys.J. C56 (2008) 333-355, [arXiv:0804.2741 [astro-ph]].