研究生: |
林育愷 Lin, Yu-Kai |
---|---|
論文名稱: |
以熱管進行熱管理之填充床式甲醇蒸汽重組產氫整合系統 An integrated packed-bed methanol steam reforming hydrogen production system with thermal management by a heat pipe |
指導教授: |
王訓忠
Wong, Shwin-Chung |
口試委員: |
李明蒼
呂志興 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 甲醇蒸汽重組 、氫氣燃燒 、觸媒填充床 、均溫性 、熱管 |
外文關鍵詞: | methanol steam reforming, hydrogen combustion, catalyst packed bed, temperature uniformity, heat pipe |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發了一新型之甲醇蒸汽重組產氫整合系統,此系統以甲醇蒸汽重組器為主體,搭配氫氣燃燒器以及蒸發器;重組器與燃燒器皆為觸媒填充床式反應器,分別選用銅鋅觸媒以及白金觸媒催化反應,蒸發器則由四根紅銅溝槽管所構成,系統設計上採用類似殼管式熱交換器之設計,將燃燒產生之熱量供給蒸發器與重組器使用。為改善觸媒床因低熱導率與化學反應速率不一造成之不均溫現象,本系統埋放一高熱導率之二相熱傳元件熱管於重組器中軸。實驗於多組條件下進行,並且鑽破重組器內熱管使之無效化,以比較埋放有效熱管與無效熱管之反應器性能差異,亦針對部分狀況進行重複性驗證,證明此研究實驗數據之重複性良好。整體而言,系統之甲醇轉化率隨著進料流量之降低以及反應溫度之提高而上升,產物一氧化碳濃度則與甲醇轉化率呈現正相關,而水碳比降低會使甲醇轉化率略為下降,產物一氧化碳濃度則明顯上升;有效熱管反應器於進料流量0.6 ml/min、水碳比1.5、反應溫度250℃之條件下,甲醇轉化率可達85%,產物一氧化碳濃度僅約0.60%;而將熱管無效化後,各反應條件下之甲醇轉化率皆有所下降,下降幅度約為5%至8%,產物一氧化碳濃度則無明顯變化。
This study presents a novel methanol steam reforming hydrogen production system. The system encompasses a methanol steam reformer, a hydrogen combustor, and an evaporator. Both the reformer and the combustor are packed bed catalytic reactors, using copper-zinc catalyst and platinum catalyst, respectively. The evaporator is composed of four copper grooved tubes. The system design is similar to a shell-and-tube heat exchanger, which supplies the heat generated by combustion to the evaporator and reformer. Due to the low conductivity of the catalyst particles and the uneven chemical reaction rate, a heat pipe is embedded in the center of the reformer to improve the temperature uniformity of the reformer. The experiment is carried out under multiple sets of conditions. After the tests, the heat pipe is deactivated and the system is retested to compare the performance with an effective heat pipe and an ineffective heat pipe. On the whole, the methanol conversion rate of the system increases with decreasing feed flow rate and increasing reaction temperature, and the product carbon monoxide concentration is positively correlated with the methanol conversion rate. With a decrease in steam-to-carbon ratio, the methanol conversion rate decreases slightly, and the product carbon monoxide concentration increases significantly. With an effective heat pipe, the methanol conversion rate can reach 85% and the product carbon monoxide concentration is only about 0.60% under the conditions of a feed flow of 0.6 ml/min, a steam-to-carbon ratio of 1.5 and a reaction temperature of 250℃. With an ineffective heat pipe, the methanol conversion rates under all reaction conditions decrease by 5% to 8%, with insignificant change in carbon monoxide concentration.
[1]http://www.fuelcelltoday.com/about-fuel-cells/benefits, accessed November 12, 2019.
[2]I. Staffell., D. Scamman., A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, K. R. Ward, The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2) (2019) 463-491.
[3]A. F. Ghenciu, Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Current opinion in solid state and materials science, 6(5) (2002) 389-399.
[4]K. Mazloomi, C. Gomes, Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews, 16(5) (2012) 3024-3033.
[5]L. F. Brown, A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy, 26(4) (2001) 381-397.
[6]K. Geissler, E. Newson, F. Vogel, T. B. Truong, P. Hottinger, A. Wokaun, Autothermal methanol reforming for hydrogen production in fuel cell applications. Physical Chemistry Chemical Physics, 3(3) (2001) 289-293.
[7]D. R. Palo, R. A. Dagle, J. D. Holladay, Methanol steam reforming for hydrogen production. Chemical reviews, 107(10) (2007) 3992-4021.
[8]J. C. Amphlett, K. A. M. Creber, J. M. Davis, R. F. Mann, B. A. Peppley, D. M. Stokes, Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 19(2) (1994) 131-137.
[9]B. A. Peppley, J. C. Amphlett, L. M. Kearns, R. F. Mann, Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Applied Catalysis A: General, 179(1-2) (1999) 21-29.
[10]B. A. Peppley, J. C. Amphlett, L. M. Kearns, R. F. Mann, Methanol–steam reforming on Cu/ZnO/Al2O3. Part 2: A comprehensive kinetic model. Applied Catalysis A: General, 179(1-2) (1999) 31-49.
[11]J. Agrell, H. Birgersson, M. Boutonnet, Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. Journal of Power Sources, 106(1-2) (2002) 249-257.
[12]H. Purnama, T. Ressler, R. E. Jentoft, H. Soerijanto, R. Schlögl, R. Schomäcker, CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Applied Catalysis A: General, 259(1) (2004) 83-94.
[13]L. Pan, S. Wang, Modeling of a compact plate-fin reformer for methanol steam reforming in fuel cell systems. Chemical Engineering Journal, 108(1-2) (2005) 51-58.
[14]C. Y. Hsueh, H. S. Chu, W. M. Yan, C. H. Chen, Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design. Applied Energy, 87(10) (2010) 3137-3147.
[15]P. J. de Wild, M. J. F. M. Verhaak, Catalytic production of hydrogen from methanol. Catalysis Today, 60(1-2) (2000) 3-10.
[16]M. T. Lee, R. Greif, C. P. Grigoropoulos, H. G. Park, F. K. Hsu, Transport in packed-bed and wall-coated steam-methanol reformers. Journal of Power Sources, 166(1) (2007) 194-201.
[17]S. Nagano, H. Miyagawa, O. Azegami, K. Ohsawa, Heat transfer enhancement in methanol steam reforming for a fuel cell. Energy Conversion and Management, 42(15-17) (2001) 1817-1829.
[18]H. C. Yoon, J. Otero, P. A. Erickson, Reactor design limitations for the steam reforming of methanol. Applied Catalysis B: Environmental, 75(3-4) (2007) 264-271.
[19]A. Karim, J. Bravo, A. Datye, Nonisothermality in packed bed reactors for steam reforming of methanol. Applied Catalysis A: General, 282(1-2) (2005) 101-109.
[20]D. E. Mears, Diagnostic criteria for heat transport limitations in fixed bed reactors. Journal of Catalysis, 20(2) (1971) 127-131.
[21]P. A. Erickson, C. H. Liao, Heat transfer enhancement of steam reformation by passive flow disturbance inside the catalyst bed. Journal of Heat Transfer, 129(8) (2007) 995-1003.
[22]R. Y. Chein, Y. C. Chen, H. J. Zhu, J. N. Chung, Numerical simulation of flow disturbance and heat transfer effects on the methanol-steam reforming in miniature annulus type reformers. Energy & Fuels, 26(2) (2012) 1202-1213.
[23]J. S. Suh, M. T. Lee, R. Greif, C. P. Grigoropoulos, Transport phenomena in a steam-methanol reforming microreactor with internal heating. International Journal of Hydrogen Energy, 34(1) (2009) 314-322.
[24]P. Nehe, V. M. Reddy, S. Kumar, Investigations on a new internally-heated tubular packed-bed methanol–steam reformer. International Journal of Hydrogen Energy, 40(16) (2015) 5715-5725.
[25]T. Durka, G. D. Stefanidis, T. Van Gerven, A. I. Stankiewicz, Microwave-activated methanol steam reforming for hydrogen production. International Journal of Hydrogen Energy, 36(20) (2011) 12843-12852.
[26]T. Kim, Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell. International Journal of Hydrogen Energy, 34(16) (2009) 6790-6798.
[27]R. Y. Chein, Y. C. Chen, Y. S. Lin, J. N. Chung, Experimental study on the hydrogen production of integrated methanol-steam reforming reactors for PEM fuel cells. International Journal of Thermal Sciences, 50(7) (2011) 1253-1262.
[28]R. Chein, Y. C. Chen, J. N. Chung, Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production. Applied Energy, 102 (2013) 1022-1034.
[29]K. F. Lo, S. C. Wong, A novel passive feeding method for methanol steam reformers. International Journal of Hydrogen Energy, 36(13) (2011) 7500-7504.
[30]K. F. Lo, S. C. Wong, A passively-fed methanol steam reformer with catalytic combustor heater. International Journal of Hydrogen Energy, 36(17) (2011) 10719-10726.
[31]K. F. Lo, S. C. Wong, A passively-fed methanol steam reformer heated with two-stage bi-fueled catalytic combustor. Journal of Power Sources, 213 (2012) 112-118.
[32]C. Pan, R. He, Q. Li, J. O. Jensen, N. J. Bjerrum, H. A. Hjulmand, A. B. Jensen, Integration of high temperature PEM fuel cells with a methanol reformer. Journal of Power Sources, 145(2) (2005) 392-398.
[33]G. Schuller, F. V. Vázquez, W. Waiblinger, S. Auvinen, P. Ribeirinha, Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer. Journal of Power Sources, 347 (2017) 47-56.
[34]M. Haruta, H. Sano. Catalytic combustion of hydrogen—III. Advantages and disadvantages of a catalytic heater with hydrogen fuel. International Journal of Hydrogen Energy, 7(9) (1982) 737-740.
[35]I. Wierzba, A. Depiak, Catalytic oxidation of lean homogeneous mixtures of hydrogen/hydrogen–methane in air. International Journal of Hydrogen Energy, 29(12) (2004) 1303-1307.
[36]W. Choi, S. Kwon, H.D. Shin, Combustion characteristics of hydrogen–air premixed gas in a sub-millimeter scale catalytic combustor. International Journal of Hydrogen Energy, 33(9) (2008) 2400-2408.
[37]R. Sui, N. I. Prasianakis, J. Mantzaras, N. Mallya, J. Theile, D. Lagrange, M. Friess, An experimental and numerical investigation of the combustion and heat transfer characteristics of hydrogen-fueled catalytic microreactors. Chemical Engineering Science, 141 (2016) 214-230.
[38]S.-C. Wong, H.-C. Hsiao, K.-F. Lo, Improving temperature uniformity and performance of co preferential oxidation for hydrogen-rich reformate with a heat pipe. International Journal of Hydrogen Energy, 39 (2014) 6492-6496.
[39]Engineering ToolBox, (2018). Air - Diffusion Coefficients of Gases in Excess of Air. [online] Available at: https://www.engineeringtoolbox.com/air-diffusion-coefficient-gas-mixture-temperature-d_2010.html, accessed November 6, 2020.
[40]Handbook of Fluent, ANSYS, Inc.
[41]羅凱帆,新型被動式進料甲醇蒸氣重組器之設計與研究 國立清華大學博士論文,2012.
[42]F, Chen, M. H. Chang, C. Y. Kuo, C. Y. Hsueh, W. M. Yan, Analysis of a plate-type microreformer for methanol steam reforming reaction. Energy & Fuels, 23(10) (2009) 5092-5098.