研究生: |
林□榮 Heng-Jung Lin |
---|---|
論文名稱: |
分子拓印型光阻劑應用於微感測器 The application of molecularly-imprinted photoresists in microsensor |
指導教授: |
李育德
Yu-Der Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 光阻劑 、分子拓印型高分子 、電化學 、感測器 |
外文關鍵詞: | photoresist, Molecularly imprinting polymers, electrochemistry, sensor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的是開發出具有分子拓印效果的光阻劑,並將之應用於微感測器。此分子拓印型光阻劑結合了分子拓印技術與黃光微影技術,其優點有:(1)人工打造的辨識孔洞; (2)藉由黃光微影製程,可於單一晶片上定義出多個不同功能的偵測區域,以達到感測器微小化之目的。
本實驗藉由將市售之norbornene衍生物單體(7-oxabicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride)進行官能化獲得功能性單體,再以開環配位聚合反應(Ring-Opening Metathesis Polymerization)獲得功能性高分子,並將不同配方比例的分子拓印型光阻劑進行曝光顯影,以光學顯微鏡觀察線路圖形,其解析度可達20~30µm,已可成功達到微小化的目的。
將以此分子拓印型光阻劑所製備之拓印電極,結合微分脈衝法進行模版分子(Vanillylmandelic acid)的電化學分析,其拓印因子α介於1~10;此拓印孔洞也具有不錯的辨識性(Ep,HVA=0.743V、βHVA=0.44;Ep,DCPA=0.701V、βDCPA=0.35);此VMA感測器的濃度線性範圍介於60µM-1600µM,相關係數為0.9956;再現性實驗的RSD值為3.71%,顯示其具有重複偵測的可信賴度。由實驗結果顯示,分子拓印型光阻劑結合電化學系統,確實具有發展成微感測器的潛力。
1. G. Wulff, “Enzyme-like Catalysis by Molecularly Imprinted Polymers”, Chem. Rev., 102, 1 (2002).
2. J. O. Mahony, K. Nolan, M. R. Smyth and B. Mizaikoff, “Molecularly imprinted polymers—potential and challenges in analytical chemistry”, Anal. Chim. Acta., 534, 31 (2005).
3. K. Haupt, “Imprinted polymers—tailor-made mimics of antibodies and receptors”, Chem. Commun., 171 (2003).
4. F. L. Dickert and O. Hayden, “Molecular imprinting in chemical sensing”, Trends Anal. Chem., 18, 192 (1999).
5. S. A. Piletsky, E. V. Piletskaya, T. L. Panasyuk, A. V. El’skaya, R. Levi, I. Karube and G. Wulff, “Imprinted membrances for sensor technology: Opposite behavior of covalently and noncovalently imprinted membrances”, Macromolecules, 31, 2137 (1998).
6. 周華萍, “生物感測器市場近況”, 生物產業, 6, 47 (1995).
7. http://www.smi.tu-berlin.de/events.htm
8. L. C. Clark and C. Lyois, Ann. N.Y. Acad. Sci., 102, 29 (1962).
9. M. C. Blanco-López, M. J. Lobo-Castañón, A. J. Miranda-Ordieres and P. Tuñón-Blanco, “Electrochemical sensors based on molecularly imprinted polymers”, Trends Anal. Chem., 23, 36 (2004).
10. K. Haupt and K. Mosbach, “Molecularly imprinted polymers and their use in biomimetic sensors”, Chem. Rev., 100, 2495 (2000).
11. S. A. Piletsky and A. P. F. Turner, “Electrochemical sensors based on molecularly imprinted polymers”, Electroanalysis, 14, 317 (2002).
12. E. Bakker, “Electrochemical sensors”, Anal. Chem., 76, 3285 (2004).
13. A. Merkoci and S. Alegret, “New materials for electrochemical sensing IV. Molecular imprinted polymers”, Trends Anal. Chem., 21, 717 (2002).
14. M. C. Blanco-López, M. J. Lobo-Castañón, A. J. Miranda-Ordieres and P. Tuñón-Blanco, “Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes”, Biosens. Bioelectron., 18, 353 (2003).
15. M. Fukuda, A.Hata, S. I. Niwa, K. I. Hiramatsu, H. Honda, K. Nakagome and A. Iwanami, “Plasma vanillylmandelic acid level as an index of psychological stress resonse in normal subjects”, Psy. Res., 63, 7 (1996).
16. D. S. Goldstein, G. Eisenhofer and I. J. Kopin, “Sources and significance of plasma levels of catechols and their metabolites in humans”, Perspectives in Pharmacology, 305, 800 (2003).
17. M. Monsaingeon, Y. Perel, G. Simonnet, J. B. Corcuff, “Coparative values of catecholamines and metabolites for the diagnosis of neuroblastoma”, Eur. J. Pediatr., 162, 397 (2003).
18. N. M. Abd-Allah, F. H. Hassan, A. Y. Esmat and S. A. Hammad, “Age dependence of the levels of plasma norepinephrine aldosterone, rennin activity and urinary vanillylmandelic acid in normal and essential hypertensives”, Biol. Res., 37, 95 (2004).
19. R. D. Riley, D. Heney, D. R. Jones, A. J. Sutton, P. C. Lambert, K. R. Abrams, B. Young, A. J. Wailoo and S. A. Burchill, “A systematic review of molecular and biological tumor markers in neuroblastoma”, Clin. Cancer Res., 10, 4 (2004).
20. C. F. van Nostrum, “Molecular imprinting: A new tool for drug innovation”, Drug Discovery Today:Technologies, 2, 119 (2005).
21. A. L. Hillberg, K. R. Brain and C. J. Allender, “Molecular imprinted polymer sensors: Implications for therapeutics”, Adv. Drug Deliv. Rev., 57, 1875 (2005).
22. J. Z. Hilt and M. E. Byrne, “Configurational biomimesis in drug delivery: molecular imprinting of biologically significant molecules”, Adv. Drug Deliv. Rev., 56, 1599 (2004).
23. G. Wulff, R. Grobe-Einsler and A. Sarhan, Makromol. Chem., 178, 2817 (1977).
24. R. Arshady and K. Mosbach, “Synthesis of substrate-selective polymers by host-guest polymerization”, Makromol. Chem., 182, 687 (1981).
25. M. J. Whitcombe, M. E. Rodriguez, P. Villar and E. N. Vulfson, “A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol”, J. Am. Chem. Soc., 117, 7105 (1995).
26. B. Sellergren, Molecularly Imprinted Polymers, Elsevier Science, 1st ed., Oxford (2001).
27. http://myweb.ncku.edu.tw/~tcchou/mimsc/mimsc.htm
28. T. S. Cheng, H. Chen and H. C. Lin, “Preparing an acrylic ester copolymer as an ultrathick negative photo resist”, Materials Letters, 57, 4578 (2003).
29. S. A. Piletsky, S. Alcock and A. P. F. Turner, “Molecular imprinting: At the edge of the third millennium”, Trends Biotechnol., 19, 9 (2001)
30. E. Hedborg, F. Winquist, I. Lundstrom, L. Andersson and K. Mosbach, “Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices”, Sens. Actuator A, 38, 796 (1993).
31. A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Application, John Wiley & Sons, Inc., 2nd ed., US (2001).
32. K. Hosoya, Y. Shirasu and K. Kimata, “Molecularly Imprinted Chiral Stationary Phase Prepared with Racemic Template”, Anal. Chem., 70, 943 (1998).
33. L. Schweit and L. I. Andersson, “Molecular imprint-based stationary phases for capillary electrochromatography”, J. Chromatogr. A, 817, 5 (1998).
34. D. Kriz, C. B. Kriz, L. I. Andersson and K. Mosbach, “Thin-layer chromotography based on molecular imprinting technique”, Anal. Chem., 66, 2636 (1994).
35. A. Zander, P. Findlay, T. Renner and B. Sellergren, “ Analysis of Nicotine and Its Oxidation Products in Nicotine Chewing Gum by a Molecularly Imprinted Solid-Phase Extraction”, Anal. Chem., 70, 3304 (1998).
36. D. Kriz, O. Ramstrom, A. Svensson and K. Mosbach, “A Biomimetic Sensor Based on a Molecularly Imprinted Polymer as a Recognition Element Combined with Fiber-Optic Detection”, Anal. Chem., 67, 2142 (1995).
37. S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano and I. Karube, “Atrazine sensing by molecularly imprinted membranes”, Biosens. Bioelectron., 10, 959 (1995).
38. S. A. Piletsky, E. V. Piletskaya, T. L. Panasyuk, R. Levi, I. Karube and G. Wulff, “Imprinted Membranes for Sensor Technology: Opposite Behavior of Covalently and Noncovalently Imprinted Membranes” Macromolecules, 31, 2137 (1998).
39. D. Kriz and K. Mosbach, “Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer”, Anal. Chim. Acta, 300, 71 (1995).
40. C. Malitesta, I. Losito and P. G. Zambonin, “Molecularly Imprinted Electrosynthesized Polymers: New Materials for Biomimetic Sensors”, Anal. Chem., 71, 1366 (1999).
41. G. S. Lee, C. W. Koh, J. C. Jung, M. H. Jung and K. H. Baik, “Photoresist monomer having hydroxy group and carboxy group, copolymer thereof and photoresist composition using the same”, U.S. Patent No.6,410,670, (2002).
42. S. Jakeway, A. de Mello, E. Russell, “Miniaturized total analysis systems for biological analysis”, Fresen. J. Anal. Chem., 366, 525 (2000).
43. A. Tudos, G. Besselink, R. Schasfoort, “Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry”, Lab. Chip, 1, 83 (2001).