研究生: |
郭哲維 Kuo, Chei-Wei |
---|---|
論文名稱: |
利用組胺酸-金屬配位和非共價鍵作用力調控膠原蛋白模擬胜肽自組裝及藥物包覆之探討 Modulating the Self-Assembly of Collagen-Mimetic Peptides via Histidine-Metal Coordination and Noncolvalent Interactions, and Study of Their Drug Encapsulation |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
魯才德
Lu, Tsai-Te 許馨云 Hsu, Hsin-Yun |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 聚脯胺酸 、胜肽 、自組裝 、組胺酸-金屬配位 、膠原蛋白模擬胜肽 、藥物包覆 |
外文關鍵詞: | Polyproline II, Peptide, Self-assembly, Histidine-metal coordination, Collagen mimetic peptides, Drug encapsulation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膠原蛋白是哺乳動物體內含量最豐富的蛋白質,並且已經被廣泛應用在生醫材料上。因此在醫材設計領域,尋找快速且高效的方法來將短鏈的膠原蛋白模擬胜肽自組裝成高階結構是非常重要的。在本研究中,我們使用了組胺酸(His)及金屬配位作用力、cation-π作用力以及疏水作用力來誘導膠原蛋白模擬胜肽自組裝成大型的結構,目的在於找出上述提到的三個作用力對於自組裝的影響。此外,我們同時也要找出His數目及位置對於自組裝結構的形貌及速度的影響。我們使用圓二色光譜儀來測量我們設計的膠原蛋白模擬胜肽的熱穩定性,並使用紫外-可見光光譜儀測量濁度來確認組裝速度,最後使用電子顯微鏡來拍攝自組裝的形貌。結果顯示,胜肽端點有His-金屬配位作用力的胜肽自組裝速度將會快於端點使用cation-π作用力的胜肽。至於形貌方面,胜肽兩端沒有進行His置換的胜肽可以形成較為有序且花狀的結構,但如果有更強的疏水作用力同時作用,則會因為疏水作用力的主導而形成有序的球狀結構。綜上所述,His的位置及數量還有疏水作用力都可以用於調控胜肽自組裝的形貌。由於胜肽可以形成大型自組裝結構,我們認為可以應用於藥物包覆方面。所以我們使用共聚焦顯微鏡確認藥物(FITC-Dexatran)可以鑲嵌於這些超分子結構上,接著我們使用微盤分析儀來監測藥物釋放的情形並發現愈不穩定的結構可以釋放出愈多的藥物,期望這些結果對於將來的膠原蛋白相關之材料研究能有所幫助。
Collagen is highly abundant in mammals and has been widely used in biomedical materials. Searching for a quick and effective way to assemble short collagen mimetic peptides (CMPs) into higher-order structures has emerged as an important and attractive research topic in biomaterial design. In this study, we utilized histidine (His) -metal interactions, cation-π interactions and hydrophobic interactions to promote the self-assembly of CMPs into large-scale constructs. We aimed to examine the different effects between ligand-metal interactions, cation-π interactions and hydrophobic interaction on the head-to-tail assembly of CMPs. Besides, we also investigated the impact of the number of His residue within a CMP on the assembly speed and structural morphology. We used circular dichroism (CD) to measure the thermal stability of the designed CMPs, turbidity measurements to monitor the assembly rate, and electron microscopy (EM) to characterize the assembled structures. The results showed that the His-metal interactions at the peptide end induced a much faster rate than cation-π interactions to form assemblies. As to morphology, the CMPs without His-metal interactions at the peptide termini could generate a more ordered and flower-like structure. But with stronger hydrophobic interaction, the CMPs could also generate ordered and spherical structure even there are His residues at the termini. Together, we demonstrated that the number and location of His residue within a CMP and the hydrophobic interaction could modulate the morphology of self-assemblies. Since the CMPs can form supramolecular structures, we suggested that these CMPs could be capable to encapsulate the drug. We used confocal to verify that the drug (FITC-Dextran) can be embedded in the supramolecular structure. We further used the ELISA reader to monitor the drug release and observed that the drug release increased as the stability of CMPs decreased. The results may be useful and helpful for the future development of collagen-related materials.
1. Friess, W. Collagen – Biomaterial for Drug Delivery. Eur. J. Pharm. Biopharm. 1998, 45 (2), 113-136.
2. Brodsky, B.; Persikov, A. V. Molecular Structure of the Collagen Triple Helix. Adv. Protein Chem. 2005, 70, 301-339.
3. Malafaya, P. B.; Silva, G. A.; Reis, R. L. Natural–Origin Polymers as Carriers and Scaffolds for Biomolecules and Cell Delivery in Tissue Engineering Applications. Adv. Drug Del. Rev. 2007, 59 (4), 207-233.
4. Lee, C. H.; Singla, A.; Lee, Y. Biomedical Applications of Collagen. Int. J. Pharm. 2001, 221 (1), 1-22.
5. Prockop, D. J.; Kivirikko, K. I. Collagens: Molecular Biology, Diseases, and Potentials for Therapy. Annu. Rev. Biochem. 1995, 64, 403-434.
6. Rich, A.; Crick, F. H. C. The Molecular Structure of Collagen. J. Mol. Biol. 1961, 3 (5), 483-484.
7. Cowan, P. M.; McGavin, S.; North, A. C. T. The Polypeptide Chain Configuration of Collagen. Nature 1955, 176 (4492), 1062-1064.
8. Cutini, M.; Bocus, M.; Ugliengo, P. Decoding Collagen Triple Helix Stability by Means of Hybrid Dft Simulations. J. Phys. Chem. B 2019, 123 (34), 7354-7364.
9. Okuyama, K.; Nagarajan, V.; Kamitori, S. 7/2-Helical Model for Collagen — Evidence from Model Peptides. Proc. Indian Acad. Sci. 1999, 111 (1), 19-34.
10. Okuyama, K. Revisiting the Molecular Structure of Collagen. Connect. Tissue Res. 2008, 49 (5), 299-310.
11. Hinderaker, M. P.; Raines, R. T. An Electronic Effect on Protein Structure. Protein Sci. 2003, 12 (6), 1188-1194.
12. Shoulders, M. D.; Raines, R. T. Interstrand Dipole-Dipole Interactions Can Stabilize the Collagen Triple Helix. J. Biol. Chem 2011, 286 (26), 22905-22912.
13. Privalov, P. L. Stability of Proteins: Proteins Which Do Not Present a Single Cooperative System. Adv. Protein Chem. 1982, 35, 1-104.
14. Brodsky, B.; Ramshaw, J. A. M. The Collagen Triple-Helix Structure. Matrix Biol. 1997, 15 (8-9), 545-554.
15. Sakakibara, S.; Inouye, K.; Shudo, K.; Kishida, Y.; Kobayashi, Y.; Prockop, D. J. Synthesis of (Pro-Hyp-Gly)N of Defined Molecular Weights Evidence for the Stabilization of Collagen Triple Helix by Hydroxypyroline. Biochim. Biophys. Acta - Proteins Proteom. 1973, 303 (1), 198-202.
16. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B. Amino Acid Propensities for the Collagen Triple-Helix. Biochemistry 2000, 39 (48), 14960-14967.
17. Whitesides George, M.; Boncheva, M. Beyond Molecules: Self-Assembly of Mesoscopic and Macroscopic Components. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (8), 4769-4774.
18. Selkoe, D. J. Cell Biology of Protein Misfolding: The Examples of Alzheimer's and Parkinson's Diseases. Nat. Cell Biol. 2004, 6 (11), 1054-1061.
19. Stefani, M.; Dobson, C. M. Protein Aggregation and Aggregate Toxicity: New Insights into Protein Folding, Misfolding Diseases and Biological Evolution. J. Mol. Med. 2003, 81 (11), 678-699.
20. Kotch Frank, W.; Raines Ronald, T. Self-Assembly of Synthetic Collagen Triple Helices. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (9), 3028-3033.
21. Werten, M. W. T.; Teles, H.; Moers, A. P. H. A.; Wolbert, E. J. H.; Sprakel, J.; Eggink, G.; de Wolf, F. A. Precision Gels from Collagen-Inspired Triblock Copolymers. Biomacromolecules 2009, 10 (5), 1106-1113.
22. Cejas, M. A.; Kinney, W. A.; Chen, C.; Leo, G. C.; Tounge, B. A.; Vinter, J. G.; Joshi, P. P.; Maryanoff, B. E. Collagen-Related Peptides: Self-Assembly of Short, Single Strands into a Functional Biomaterial of Micrometer Scale. J. Am. Chem. Soc. 2007, 129 (8), 2202-2203.
23. Rele, S.; Song, Y.; Apkarian, R. P.; Qu, Z.; Conticello, V. P.; Chaikof, E. L. D-Periodic Collagen-Mimetic Microfibers. J. Am. Chem. Soc. 2007, 129 (47), 14780-14787.
24. Chen, C.-C.; Hsu, W.; Kao, T.-C.; Horng, J.-C. Self-Assembly of Short Collagen-Related Peptides into Fibrils via Cation−π Interactions. Biochemistry 2011, 50 (13), 2381-2383.
25. Kar, K.; Ibrar, S.; Nanda, V.; Getz, T. M.; Kunapuli, S. P.; Brodsky, B. Aromatic Interactions Promote Self-Association of Collagen Triple-Helical Peptides to Higher-Order Structures. Biochemistry 2009, 48 (33), 7959-7968.
26. Paramonov, S. E.; Gauba, V.; Hartgerink, J. D. Synthesis of Collagen-Like Peptide Polymers by Native Chemical Ligation. Macromolecules 2005, 38 (18), 7555-7561.
27. Higashi, N.; Yoshikawa, R.; Koga, T. Photo-Responsive Azobenzene Interactions Promote Hierarchical Self-Assembly of Collagen Triple-Helical Peptides to Various Higher-Order Structures. RSC Adv. 2020, 10 (27), 15947-15954.
28. Song, Q.; Kerr, A.; Yang, J.; Hall, S. C. L.; Perrier, S. Tubular Supramolecular Alternating Copolymers Fabricated by Cyclic Peptide–Polymer Conjugates. Chem. Sci. 2021, 12 (26), 9096-9103.
29. Przybyla, D. E.; Rubert Pérez, C. M.; Gleaton, J.; Nandwana, V.; Chmielewski, J. Hierarchical Assembly of Collagen Peptide Triple Helices into Curved Disks and Metal Ion-Promoted Hollow Spheres. J. Am. Chem. Soc. 2013, 135 (9), 3418-3422.
30. Ting, Y.-H.; Chen, H.-J.; Cheng, W.-J.; Horng, J.-C. Zinc(Ii)–Histidine Induced Collagen Peptide Assemblies: Morphology Modulation and Hydrolytic Catalysis Evaluation. Biomacromolecules 2018, 19 (7), 2629-2637.
31. Pires, M. M.; Chmielewski, J. Self-Assembly of Collagen Peptides into Microflorettes via Metal Coordination. J. Am. Chem. Soc. 2009, 131 (7), 2706-2712.
32. Roat-Malone, R. M. Bioinorganic Chemistry: A Short Course. 1st ed.; Wiley, 2002; p 348.
33. Crichton, R. Biological Inorganic Chemistry: An Introduction. 1st ed.; Boston : Elsevier, 2008; p 369.
34. Hsu, W.; Chen, Y.-L.; Horng, J.-C. Promoting Self-Assembly of Collagen-Related Peptides into Various Higher-Order Structures by Metal–Histidine Coordination. Langmuir 2012, 28 (6), 3194-3199.
35. 徐維. 利用組胺酸-金屬配位鍵與cation-π作用力來進行膠原蛋白自組裝之探討. 國立清華大學, 新竹市, 2011.
36. Przybyla, D. E.; Chmielewski, J. Metal-Triggered Radial Self-Assembly of Collagen Peptide Fibers. J. Am. Chem. Soc. 2008, 130 (38), 12610-12611.
37. Gleaton, J.; Chmielewski, J. Thermally Controlled Collagen Peptide Cages for Biopolymer Delivery. ACS Biomater. Sci. Eng. 2015, 1 (10), 1002-1008.
38. Hernandez-Gordillo, V.; Chmielewski, J. Mimicking the Extracellular Matrix with Functionalized, Metal-Assembled Collagen Peptide Scaffolds. Biomaterials 2014, 35 (26), 7363-7373.
39. Sun, X.; He, M.; Wang, L.; Luo, L.; Wang, J.; Xiao, J. Luminescent Biofunctional Collagen Mimetic Nanofibers. ACS Omega 2019, 4 (15), 16270-16279.
40. Pires, M. M.; Ernenwein, D.; Chmielewski, J. Selective Decoration and Release of His-Tagged Proteins from Metal-Assembled Collagen Peptide Microflorettes. Biomacromolecules 2011, 12 (7), 2429-2433.
41. 丁翊涵. 金屬誘導膠原蛋白模擬胜肽自組裝與其結構對酯類水解反應之催化活性探討. 國立清華大學, 新竹市, 2016.
42. Fitc–Dextran Conjugate. https://www.aatbio.com/products/fitc-dextran-conjugate-average-mw-20k (accessed 2022.07.06).
43. Congo Red. https://www.sigmaaldrich.com/TW/en/product/sigma/c6767 (accessed 2022.07.06).
44. Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.; Raines, R. T. Conformational Stability of Collagen Relies on a Stereoelectronic Effect. J. Am. Chem. Soc. 2001, 123 (4), 777-778.
45. Leonard, D. W.; Meek, K. M. Refractive Indices of the Collagen Fibrils and Extrafibrillar Material of the Corneal Stroma. Biophys. J. 1997, 72 (3), 1382-1387.
46. Qvit, N.; Kornfeld, O. Development of a Backbone Cyclic Peptide Library as Potential Antiparasitic Therapeutics Using Microwave Irradiation. J. Vis. Exp. 2016, 2016.
47. Electric, Magnetic Field. https://physics.stackexchange.com/questions/601256/magnet-field-and-electric-field-representation-image-misunderstanding (accessed 2022.07.01).
48. Circular Polarized. https://en.wikipedia.org/wiki/Circular_polarization (accessed 2022.07.01).
49. Santos, A.; Sugon Jr, Q.; McNamara, D. Polarization Ellipse and Stokes Parameters in Geometric Algebra. J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 2012, 29, 89-98.
50. Greenfield, N. Using Circular Dichroism Collected as a Function of Temperature to Determine the Thermodynamics of Protein Unfolding and Binding Interactions. Nat. Protoc. 2006, 1, 2527-2535.
51. Kar, K.; Wang, Y. H.; Brodsky, B. Sequence Dependence of Kinetics and Morphology of Collagen Model Peptide Self-Assembly into Higher Order Structures. Protein Sci. 2008, 17 (6), 1086-1095.