研究生: |
林育賢 Yu-Hsien Lin |
---|---|
論文名稱: |
單壁奈米碳管在交流電路的品質因數研究 Exceptional Quality Factor in Single-Walled Carbon Nanotubes |
指導教授: |
徐文光
Wen-Kuang Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 奈米碳管 、品質因數 、共振頻率 |
外文關鍵詞: | carbon nanotubes, quality factor, resonant frequency |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,第一部份主要探討單壁奈米碳管在交流電路中所測得極高的品質因數。相較於一般的電子元件品質因數大約從數十到數百不等,本實驗我們利用單壁奈米碳管作為介電值,還有碳管本身螺旋電流所造成的電感效應,在交流電路中架構成一個RLC共振電路,可以輕鬆獲得數百到數千的品質因數。
第二部分中,利用紅光雷射,照射在碳管上使之產生光電流,而造成電阻與電容等等電性上的影響,經由這些影響,使得碳管的品質因數可以提升若干倍。除了品質因數大小有所影響,照光之後也觀察到共振頻率隨著照光而有所改變。
關於本論文的章節編排,第一章為文獻回顧,第二章是實驗,第三章實驗結果與討論,第四章是結論,最後是參考資料。
In this work, we discover that single-walled carbon nanotubes (SWNTs) exhibit exceptionally high quality factor in ac circuit. We find that SWNTs not only play the role as a dielectric material to contribute the capacitance to an ac circuit, but also contribute the inductance to the circuit due to the helical current arisen in itself. For the contribution of SWNTs, the circuit performs extra high quality factor compared to traditional material. In the end of this chapter, we will discuss the electrical behavior and the main mechanism of SWNTs in a RLC circuit.
In addition, we illuminate the SWNTs device by laser in order to find the relationship between the photocurrent and the electrical characteristics. When the device illuminate by laser, the resistance decreases and the quality factor increase as well. In addition to the quality factor, the resonant frequency is also changed after illuminating.
[1] Carbon Nanotubes, M. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Eds , Springer-Verlag , Berlin (2001).
[2] Saito R, Dresselhaus MS, Dresselhaus G. Physical Properties of Carbon Nanotubes. Imperial College9 (1998).
[3] Dresselhaus MS, Dresselhaus G, Eklunk PC. Science of Fullerenes & Carbon Nanotubes. San Diego:Academic Press (1996).
[4] Dresselhaus MS, Eklund PC. Adv Phys. 49, 705 (2000).
[5] N. Hamada, S.-I. Swada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
[6] J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992).
[7] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).
[8] N. Hamada, S.-I. Swada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
[9] L. Ci , J. Wei, B. Wei, J. Liang, C. Xu and D. Wu, Carbon 39, 329 (2001).
[10] L. Ci , J. Wei, B. Wei, J. Liang, C. Xu and D. Wu, Carbon 39, 329 (2001).
[11] R. Kamalakaran, M. Terrones, T. Seeger, Ph. Kohler-Redlich, M. Ruhle, Y. A. Kim, T. Hayashi, and M. Endo, Appl. Phys. Lett. 77 , 3385 (2000).
[12] X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu and D. Wu, Chem. Phys. Lett. 362, 285 (2002).
[13] Ijima S, Ichihashi T. Nature.363, 603 (1993).
[14] 奈米碳管 Carbon Nanotubes, 成會明
[15] Miyamoto Y, Louie SG, Cohen ML. et al. Phys. Rev. Lett. 76, 2121 (1996).
[16] Lin-Chung PJ, Rajagopal AK, Phys. Rev. B. 49, 8454 (1994).
[17] Shengdong Li, Zhen Yu, Sheng-Feng Yen, W. C. Tang, and Peter J. Burke, Nano Lett. 4, 4, 753 (2004).
[18] Zhuo Chen, Yanlian Yang, Fang Chen, Quan Qing, Zhongyun Wu, and Zhongfan Liu, J. Phys. Chem. B 109, 11420 (2005).
[19] Y.-P. Zhao, B. Q. Wei, P. M. Ajayan, G. Ramanath, T.-M. Lu, and G.-C. Wang, Phys. Rev B 64, 201402 (2001).
[20] Yi-Chun Su and Wen-Kuang Hsu, Appl. Phys. Lett. 87, 233112 (2005)
[21] M. Freitag, Y. Martin, J. A. Misewich, R. Martel, Ph. Nano Lett. 3 , 8, 1067 (2003).
[22] I.A. Levitsky, W.B. Euler, Appl. Phys. Lett. 83, 1857 (2003).
[23] D-H Lien, W-K Hsu * , H-W Zan, N-H Tai, C-H Tsai, Adv. Mater, 18, 98 (2006).
[24] M. S. Fuhrer, B. M. Kim, T. Dürkop, and T. Brintlinger, Nano Letters 2, 755 (2002).
[25] O. M. Yevtushenko, G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, and D. A. Romanov, Phys. Rev. Lett. 79, 1102 (1997).
[26] A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, K. N. Ogawa H. Kataura, Y. Maniwa, et al. Carbon, 42, 919 (2004) .
[27] Quality Factor, Peak Frequency and Bandwidth http://fourier.eng.hmc.edu/e84/lectures/ch3/node9.html