研究生: |
蕭瑄怡 Hsiao, Hsuan-Yi |
---|---|
論文名稱: |
硼酸修飾表面製備醣微陣列晶片的發展及應用 Fabrication of Carbohydrate Microarrays through Boronate Formation |
指導教授: |
林俊成
Lin, Chun-Cheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 微陣列 、醣晶片 、硼酸 |
外文關鍵詞: | microarray, carbohydrate, boronic acid |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醣微陣列晶片是一種可同時篩選多種醣體、使用較少的樣品,快速且高通量的分析方式。對於醣生物學的研究領域,醣晶片是一種快速且有效分析醣體與生物分子交互作用的方法。在本研究中,根據硼酸能與醣體上的二元醇形成環狀硼酸酯的特性,發展一種新穎且簡便的醣晶片製程,可提供穩定、共價鍵固化的醣晶片。雖然硼酸酯化反應在水溶液中是一種可逆的反應,但由於醣體上許多羥基的多價體效應,以及硼酸酯共價鍵的特性,醣體固化在玻片表面後不容易被洗掉。除了單醣之外,這樣的固化方式適用於各種大小的醣體,且不影響晶片表面上的醣體與蛋白質的結合能力。此外,市售的醣體或是由生物樣品純化的醣體,可直接固化在硼酸修飾的表面,不需要額外的化學修飾。在篩選分析醣體與蛋白質交互作用與定量分析交互作用的親和力強弱的應用中,硼酸修飾的醣晶片提供了一種便利且快速的平台。
Carbohydrate microarrays, which screen many carbohydrates simultaneously with a minimal consumption of reagents, provide a viable solution for glycobiology research as a reliable and efficient tool for rapid analysis of carbohydrate-biomolecule interactions. We have developed a novel and easy method for fabricating a stable, covalent, and highly active carbohydrate microarray based on boronate formation between the hydroxyl groups of carbohydrate and boronic acid (BA) on the glass surface. Although the formation of boronate is a reversible reaction in aqueous solution, the BA-based carbohydrate microarray resist the stringent wash because of multivalent binding between carbohydrate hydroxyl groups and BAs on the surface. Except monosaccharides, this method is suitable for immobilizing all sizes of carbohydrates with biological binding activity toward the corresponding lectins. In addition, there is no need to perform sugar modification before immobilization. The BA-based carbohydrate microarrays were used to identify carbohydrate-protein interactions and to measure the dissociation constant of corresponding carbohydrate-binding protein.
1. Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etxler, M. E., In Essentials of glycobiology, Cold Spring Harbor Laboratory Press: New York, 2009; pp 1-784.
2. Ohtsubo, K.; Marth, J. D., Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855-867.
3. Marth, J. D.; Grewal, P. K., Mammalian glycosylation in immunity. Nat. Rev. Immunol. 2008, 8, 874-887.
4. Werz, D. B.; Ranzinger, R.; Herget, S.; Adibekian, A.; von der Lieth, C. W.; Seeberger, P. H., Exploring the structural diversity of mammalian carbohydrates ("glycospace") by statistical databank analysis. ACS Chem. Biol. 2007, 2, 685-691.
5. Furmanek, A.; Hofsteenge, J., Protein C-mannosylation: facts and questions. Acta Biochim. Pol. 2000, 47, 781-789.
6. Cummings, R. D., The repertoire of glycan determinants in the human glycome. Mol. BioSyst. 2009, 5, 1087-1104.
7. Doyle, M. L., Characterization of binding interactions by isothermal titration calorimetry. Curr. Opin. Biotechnol. 1997, 8, 31-35.
8. Dam, T. K.; Brewer, C. F., Thermodynamic Studies of Lectin−Carbohydrate Interactions by Isothermal Titration Calorimetry. Chem. Rev. 2002, 102, 387-430.
9. Dam, T. K.; Brewer, C. F., Multivalent protein-carbohydrate interactions: isothermal titration microcalorimetry studies. Methods Enzymol. 2004, 379, 107-128.
10. Mann, D. A.; Kanai, M.; Maly, D. J.; Kiessling, L. L., Probing Low Affinity and Multivalent Interactions with Surface Plasmon Resonance: Ligands for Concanavalin A. J. Am. Chem. Soc. 1998, 120, 10575-10582.
11. Hirabayashi, J., Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconjugate J. 2004, 21, 35-40.
12. Nakamura-Tsuruta, S.; Uchiyama, N.; Hirabayashi, J., High-throughput analysis of lectin-oligosaccharide interactions by automated frontal affinity chromatography. Methods Enzymol. 2006, 415, 311-325.
13. McCoy, J. P., Jr.; Varani, J.; Goldstein, I. J., Enzyme-linked lectin assay (ELLA): use of alkaline phosphatase-conjugated Griffonia simplicifolia B4 isolectin for the detection of alpha-D-galactopyranosyl end groups. Anal. Biochem. 1983, 130, 437-444.
14. Wu, J. H.; Singh, T.; Herp, A.; Wu, A. M., Carbohydrate recognition factors of the lectin domains present in the Ricinus communis toxic protein (ricin). Biochimie 2006, 88, 201-217.
15. Takach, J. C.; Mikulecky, P. J.; Feig, A. L., Salt-Dependent Heat Capacity Changes for RNA Duplex Formation. J. Am. Chem. Soc. 2004, 126, 6530-6531.
16. Sorme, P.; Kahl-Knutson, B.; Wellmar, U.; Nilsson, U. J.; Leffler, H., Fluorescence polarization to study galectin-ligand interactions. Methods Enzymol. 2003, 362, 504-512.
17. Krishnamoorthy, L.; Mahal, L. K., Glycomic analysis: an array of technologies. ACS Chem. Biol. 2009, 4, 715-732.
18. Laurent, N.; Voglmeir, J.; Flitsch, S. L., Glycoarrays-tools for determining protein-carbohydrate interactions and glycoenzyme specificity. Chem. Commun. 2008, 4400-4412.
19. Wu, C. Y.; Liang, P. H.; Wong, C. H., New development of glycan arrays. Org. Biomol. Chem. 2009, 7, 2247-2254.
20. Park, S.; Lee, M.-R.; Shin, I., Carbohydrate microarrays as powerful tools in studies of carbohydrate-mediated biological processes. Chem. Commun. 2008, 4389-4399.
21. Schena, M.; Shalon, D.; Davis, R. W.; Brown, P. O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270, 467-470.
22. Feizi, T.; Fazio, F.; Chai, W.; Wong, C.-H., Carbohydrate microarrays -- a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 2003, 13, 637-645.
23. Fukui, S.; Feizi, T.; Galustian, C.; Lawson, A. M.; Chai, W., Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 2002, 20, 1011-1017.
24. Ko, K.-S.; Jaipuri, F. A.; Pohl, N. L., Fluorous-Based Carbohydrate Microarrays. J. Am. Chem. Soc. 2005, 127, 13162-13163.
25. Park, S.; Shin, I., Fabrication of Carbohydrate Chips for Studying Protein-Carbohydrate Interactions. Angew. Chem. Int. Ed. 2002, 41, 3180-3182.
26. Park, S.; Lee, M. R.; Pyo, S. J.; Shin, I., Carbohydrate Chips for Studying High-Throughput Carbohydrate-Protein Interactions. J. Am. Chem. Soc. 2004, 126, 4812-4819.
27. Adams, E. W.; Ratner, D. M.; Bokesch, H. R.; McMahon, J. B.; O'Keefe, B. R.; Seeberger, P. H., Oligosaccharide and Glycoprotein Microarrays as Tools in HIV Glycobiology: Glycan-Dependent gp120/Protein Interactions. Chem. Biol. 2004, 11, 875-881.
28. Houseman, B. T.; Gawalt, E. S.; Mrksich, M., Maleimide-Functionalized Self-Assembled Monolayers for the Preparation of Peptide and Carbohydrate Biochips. Langmuir 2002, 19, 1522-1531.
29. Ratner, D. M.; Adams, E. W.; Su, J.; O'Keefe, B. R.; Mrksich, M.; Seeberger, P. H., Probing Protein-Carbohydrate Interactions with Microarrays of Synthetic Oligosaccharides. ChemBioChem 2004, 5, 379-383.
30. Houseman, B. T.; Mrksich, M., Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 2002, 9, 443-454.
31. Lee, M.-R.; Shin, I., Fabrication of Chemical Microarrays by Efficient Immobilization of Hydrazide-Linked Substances on Epoxide-Coated Glass Surfaces13. Angew. Chem. Int. Ed. 2005, 44, 2881-2884.
32. Park, S.; Shin, I., Carbohydrate Microarrays for Assaying Galactosyltransferase Activity. Org. Lett. 2007, 9, 1675-1678.
33. Manimala, J. C.; Li, Z.; Jain, A.; VedBrat, S.; Gildersleeve, J. C., Carbohydrate Array Analysis of Anti-Tn Antibodies and Lectins Reveals Unexpected Specificities: Implications for Diagnostic and Vaccine Development. ChemBioChem 2005, 6, 2229-2241.
34. K□hn, M.; Wacker, R.; Peters, C.; Schr□der, H.; Soul□re, L.; Breinbauer, R.; Niemeyer, C. M.; Waldmann, H., Staudinger Ligation: A New Immobilization Strategy for the Preparation of Small-Molecule Arrays. Angew. Chem. Int. Ed. 2003, 42, 5830-5834.
35. Sun, X.-L.; Stabler, C. L.; Cazalis, C. S.; Chaikof, E. L., Carbohydrate and Protein Immobilization onto Solid Surfaces by Sequential Diels-Alder and Azide-Alkyne Cycloadditions. Bioconjugate Chem. 2005, 17, 52-57.
36. Schwarz, M.; Spector, L.; Gargir, A.; Shtevi, A.; Gortler, M.; Altstock, R. T.; Dukler, A. A.; Dotan, N., A new kind of carbohydrate array, its use for profiling antiglycan antibodies, and the discovery of a novel human cellulose-binding antibody. Glycobiology 2003, 13, 749-754.
37. Blixt, O.; Head, S.; Mondala, T.; Scanlan, C.; Huflejt, M. E.; Alvarez, R.; Bryan, M. C.; Fazio, F.; Calarese, D.; Stevens, J.; Razi, N.; Stevens, D. J.; Skehel, J. J.; van Die, I.; Burton, D. R.; Wilson, I. A.; Cummings, R. D.; Bovin, N.; Wong, C.-H.; Paulson, J. C., Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 17033-17038.
38. Paz, J. L. d.; Noti, C.; Seeberger, P. H., Microarrays of Synthetic Heparin Oligosaccharides. J. Am. Chem. Soc. 2006, 128, 2766-2767.
39. Tully, S. E.; Rawat, M.; Hsieh-Wilson, L. C., Discovery of a TNF-a Antagonist Using Chondroitin Sulfate Microarrays. J. Am. Chem. Soc. 2006, 128, 7740-7741.
40. Paz, J. L. d.; Spillmann, D.; Seeberger, P. H., Microarrays of heparin oligosaccharides obtained by nitrous acid depolymerization of isolated heparin. Chem. Commun. 2006, 3116-3118.
41. Xia, B.; Kawar, Z. S.; Ju, T.; Alvarez, R. A.; Sachdev, G. P.; Cummings, R. D., Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods 2005, 2, 845-850.
42. Bohorov, O.; Andersson-Sand, H.; Hoffmann, J.; Blixt, O., Arraying glycomics: a novel bi-functional spacer for one-step microscale derivatization of free reducing glycans. Glycobiology 2006, 16, 21C-27C.
43. Angeloni, S.; Ridet, J. L.; Kusy, N.; Gao, H.; Crevoisier, F.; Guinchard, S.; Kochhar, S.; Sigrist, H.; Sprenger, N., Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 2005, 15, 31-41.
44. Zhou, X.; Zhou, J., Oligosaccharide microarrays fabricated on aminooxyacetyl functionalized glass surface for characterization of carbohydrate-protein interaction. Biosens. Bioelectron. 2006, 21, 1451-1458.
45. Lee, M. R.; Shin, I., Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Org. Lett. 2005, 7, 4269-4272.
46. Wang, D.; Liu, S.; Trummer, B. J.; Deng, C.; Wang, A., Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 2002, 20, 275-281.
47. Shipp, E. L.; Hsieh-Wilson, L. C., Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays. Chem. Biol. 2007, 14, 195-208.
48. Huang, C.-Y.; Thayer, D. A.; Chang, A. Y.; Best, M. D.; Hoffmann, J.; Head, S.; Wong, C.-H., Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15-20.
49. Lawrie, C. H.; Marafioti, T.; Hatton, C. S. R.; Dirnhofer, S.; Roncador, G.; Went, P.; Tzankov, A.; Pileri, S. A.; Pulford, K.; Banham, A. H., Cancer-associated carbohydrate identification in Hodgkin's lymphoma by carbohydrate array profiling. Int. J. Cancer 2006, 118, 3161-3166.
50. Patwa, T. H.; Zhao, J.; Anderson, M. A.; Simeone, D. M.; Lubman, D. M., Screening of Glycosylation Patterns in Serum Using Natural Glycoprotein Microarrays and Multi-Lectin Fluorescence Detection. Anal. Chem. 2006, 78, 6411-6421.
51. Wang, D.; Carroll, G. T.; Turro, N. J.; Koberstein, J. T.; Kovac, P.; Saksena, R.; Adamo, R.; Herzenberg, L. A.; Steinman, L., Photogenerated glycan arrays identify immunogenic sugar moieties of Bacillus anthracis exosporium. Proteomics 2007, 7, 180-184.
52. Calarese, D. A.; Lee, H.-K.; Huang, C.-Y.; Best, M. D.; Astronomo, R. D.; Stanfield, R. L.; Katinger, H.; Burton, D. R.; Wong, C.-H.; Wilson, I. A., Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 13372-13377.
53. Ratner, D. M.; Seeberger, P. H., Carbohydrate microarrays as tools in HIV glycobiology. Curr. Pharm. Des. 2007, 13, 173-183.
54. Boonyarattanakalin, S.; Liu, X.; Michieletti, M.; Lepenies, B.; Seeberger, P. H., Chemical Synthesis of All Phosphatidylinositol Mannoside (PIM) Glycans from Mycobacterium tuberculosis. J. Am. Chem. Soc. 2008, 130, 16791-16799.
55. Stevens, J.; Blixt, O.; Glaser, L.; Taubenberger, J. K.; Palese, P.; Paulson, J. C.; Wilson, I. A., Glycan Microarray Analysis of the Hemagglutinins from Modern and Pandemic Influenza Viruses Reveals Different Receptor Specificities. J. Mol. Biol. 2006, 355, 1143-1155.
56. Stevens, J.; Blixt, O.; Tumpey, T. M.; Taubenberger, J. K.; Paulson, J. C.; Wilson, I. A., Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus. Science 2006, 312, 404-410.
57. Kumari, K.; Gulati, S.; Smith, D.; Gulati, U.; Cummings, R.; Air, G., Receptor binding specificity of recent human H3N2 influenza viruses. Virol. J. 2007, 4, 42.
58. de Paz, J. L.; Moseman, E. A.; Noti, C.; Polito, L.; von Andrian, U. H.; Seeberger, P. H., Profiling Heparin–Chemokine Interactions Using Synthetic Tools. ACS Chem. Biol. 2007, 2, 735-744.
59. Gama, C. I.; Tully, S. E.; Sotogaku, N.; Clark, P. M.; Rawat, M.; Vaidehi, N.; Goddard, W. A.; Nishi, A.; Hsieh-Wilson, L. C., Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat. Chem. Biol. 2006, 2, 467-473.
60. Gyorgy, B.; Tothfalusi, L.; Nagy, G.; Pasztoi, M.; Geher, P.; Lorinc, Z.; Polgar, A.; Rojkovich, B.; Ujfalussy, I.; Poor, G.; Pocza, P.; Wiener, Z.; Misjak, P.; Koncz, A.; Falus, A.; Buzas, E., Natural autoantibodies reactive with glycosaminoglycans in rheumatoid arthritis. Arthritis Res. Ther. 2008, 10, R110.
61. Oyelaran, O.; Gildersleeve, J. C., Application of carbohydrate array technology to antigen discovery and vaccine development. Expert Rev. Vaccines 2007, 6, 957-969.
62. Snyder, H. R.; Kuck, J. A.; Johnson, J. R., Organoboron Compounds, and the Study of Reaction Mechanisms. Primary Aliphatic Boronic Acids1. J. Am. Chem. Soc. 1938, 60, 105-111.
63. Lorand, J. P.; Edwards, J. O., Polyol Complexes and Structure of the Benzeneboronate Ion. J. Org. Chem. 1959, 24, 769-774.
64. Springsteen, G.; Wang, B., A detailed examination of boronic acid-diol complexation. Tetrahedron 2002, 58, 5291-5300.
65. Yan, J.; Springsteen, G.; Deeter, S.; Wang, B., The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols--it is not as simple as it appears. Tetrahedron 2004, 60, 11205-11209.
66. Sugihara, J. M.; Bowman, C. M., Cyclic Benzeneboronate Esters. J. Am. Chem. Soc. 1958, 80, 2443-2446.
67. Kuivila, H. G.; Keough, A. H.; Soboczenski, E. J., Areneboronates from diols and polyols. J. Org. Chem. 1954, 19, 780-783.
68. Wood, P. J.; Sidiqui, I. R., Synthesis, and p.m.r. and mass spectra of some boronic esters of carbohydrates. Carbohydr. Res. 1974, 36, 247-256.
69. Tsukagoshi, K.; Shinkai, S., Specific complexation with mono- and disaccharides that can be detected by circular dichroism. J. Org. Chem. 1991, 56, 4089-4091.
70. Kondo, K.; Shiomi, Y.; Saisho, M.; Harada, T.; Shinkai, S., Specific complexation of disaccharides with diphenyl-3,3'-diboronic acid that can be detected by circular dichroism. Tetrahedron 1992, 48, 8239-8252.
71. Norrild, J. C.; Eggert, H., Evidence for Mono- and Bisdentate Boronate Complexes of Glucose in the Furanose Form. Application of 1JC-C Coupling Constants as a Structural Probe. J. Am. Chem. Soc. 1995, 117, 1479-1484.
72. James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S., Saccharide Sensing with Molecular Receptors Based on Boronic Acid. Angew. Chem. Int. Ed. 1996, 35, 1910-1922.
73. James, T. D.; Sandanayake, K. S.; Shinkai, S., Recognition of sugars and related compounds by “reading-out”-type interfaces. Supramol. Chem. 1995, 6, 141 - 157.
74. Bourne, E. J.; McKinley, I. R.; Weigel, H., A convenient method for the synthesis of 6-O-methyl-D-glucose. Carbohydr. Res. 1972, 25, 516-517.
75. Smoum, R.; Rubinstein, A.; Srebnik, M., Combined 1H, 13C and 11B NMR and mass spectral assignments of boronate complexes of D-(+)-glucose, D-(+)-mannose, methyl-alpha-D-glucopyranoside, methyl-beta-D-galactopyranoside and methyl-alpha-D-mannopyranoside. Magn. Reson. Chem. 2003, 41, 1015-1020.
76. Nicholls, M. P.; Paul, P. K. C., Structures of carbohydrate-boronic acid complexes determined by NMR and molecular modelling in aqueous alkaline media. Org. Biomol. Chem. 2004, 2, 1434-1441.
77. Benner, K.; Kl□fers, P.; Labisch, O., Borate esters of the methyl d-glucopyranosides. Carbohydr. Res. 2007, 342, 2801-2806.
78. Jin, S.; Cheng, Y.; Reid, S.; Li, M.; Wang, B., Carbohydrate recognition by boronolectins, small molecules, and lectins. Med. Res. Rev. 2009, 30, 171-257.
79. Yan, J.; Fang, H.; Wang, B., Boronolectins and fluorescent boronolectins: An examination of the detailed chemistry issues important for the design. Med. Res. Rev. 2005, 25, 490-520.
80. James, T.; Shinkai, S., Artificial Receptors as Chemosensors for Carbohydrates. 2002; pp 159-200.
81. Fang, H.; Kaur, G.; Wang, B., Progress in Boronic Acid-Based Fluorescent Glucose Sensors. J. Fluoresc. 2004, 14, 481-489.
82. Pickup, J. C.; Hussain, F.; Evans, N. D.; Rolinski, O. J.; Birch, D. J., Fluorescence-based glucose sensors. Biosens. Bioelectron. 2005, 20, 2555-2565.
83. Liu, X. C.; Scouten, W. H., Boronate affinity chromatography. Methods Mol. Biol. 2000, 147, 119-128.
84. Fluckiger, R.; Woodtli, T.; Berger, W., Quantitation of glycosylated hemoglobin by boronate affinity chromatography. Diabetes 1984, 33, 73-76.
85. Herold, D. A.; Boyd, J. C.; Bruns, D. E.; Emerson, J. C.; Burns, K. G.; Bray, R. E.; Vandenhoff, G. E.; Freedlender, A. E.; Fortier, G. A.; Pohl, S. L.; et al., Measurement of glycosylated hemoglobins using boronate affinity chromatography. Ann. Clin. Lab. Sci. 1983, 13, 482-488.
86. Jackson, T. R.; Springall, J. S.; Rogalle, D.; Masumoto, N.; Li, H. C.; D'Hooge, F.; Perera, S. P.; Jenkins, T. A.; James, T. D.; Fossey, J. S.; Elsen, J. M. H. v. d., Boronate affinity saccharide electrophoresis: A novel carbohydrate analysis tool. Electrophoresis 2008, 29, 4185-4191.
87. Kanayama, N.; Kitano, H., Interfacial recognition of sugars by boronic acid-carrying self-sssembled monolayer. Langmuir 2000, 16, 577-583.
88. Takahashi, S.; Anzai, J., Phenylboronic acid monolayer-modified electrodes sensitive to sugars. Langmuir 2005, 21, 5102-5107.
89. Abad, J. M.; Velez, M.; Santamaria, C.; Guisan, J. M.; Matheus, P. R.; Vazquez, L.; Gazaryan, I.; Gorton, L.; Gibson, T.; Fernandez, V. M., Immobilization of peroxidase glycoprotein on gold electrodes modified with mixed epoxy-boronic Acid monolayers. J. Am. Chem. Soc. 2002, 124, 12845-12853.
90. Zayats, M.; Katz, E.; Willner, I., Electrical contacting of glucose oxidase by surface-reconstitution of the apo-protein on a relay-boronic acid-FAD cofactor monolayer. J. Am. Chem. Soc. 2002, 124, 2120-2121.
91. Soh, N.; Sonezaki, M.; Imato, T., Modification of a Thin Gold Film with Boronic Acid Membrane and Its Application to a Saccharide Sensor Based on Surface Plasmon Resonance. Electroanalysis 2003, 15, 1281-1290.
92. Zhang, J.; Geddes, C. D.; Lakowicz, J. R., Complexation of polysaccharide and monosaccharide with thiolate boronic acid capped on silver nanoparticle. Anal. Biochem. 2004, 332, 253-260.
93. Matsumoto, A.; Sato, N.; Kataoka, K.; Miyahara, Y., Noninvasive Sialic Acid Detection at Cell Membrane by Using Phenylboronic Acid Modified Self-Assembled Monolayer Gold Electrode. J. Am. Chem. Soc. 2009, 131, 12022-12023.
94. Zhang, X.; Wu, Y.; Tu, Y.; Liu, S., A reusable electrochemical immunosensor for carcinoembryonic antigen via molecular recognition of glycoprotein antibody by phenylboronic acid self-assembly layer on gold. Analyst 2008, 133, 485-492.
95. Liu, X. C.; Scouten, W. H., Studies on oriented and reversible immobilization of glycoprotein using novel boronate affinity gel. J. Mol. Recognit. 1996, 9, 462-467.
96. Chen, M.-L.; Adak, A. K.; Yeh, N.-C.; Yang, W.-B.; Chuang, Y.-J.; Wong, C.-H.; Hwang, K.-C.; Hwu, J.-R. R.; Hsieh, S.-L.; Lin, C.-C., Fabrication of an oriented Fc-fused lectin microarray through boronate formation. Angew. Chem. Int. Ed. 2008, 47, 8627-8630.
97. Lin, P.-C.; Chen, S.-H.; Wang, K.-Y.; Chen, M.-L.; Adak, A. K.; Hwu, J.-R. R.; Chen, Y.-J.; Lin, C.-C., Fabrication of Oriented Antibody-Conjugated Magnetic Nanoprobes and Their Immunoaffinity Application. Anal. Chem. 2009, 81, 8774-8782.
98. Sparbier, K.; Koch, S.; Kessler, I.; Wenzel, T.; Kostrzewa, M., Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J. Biomol. Tech. 2005, 16, 407-413.
99. Gontarev, S.; Shmanai, V.; Frey, S. K.; Kvach, M.; Schweigert, F. J., Application of phenylboronic acid modified hydrogel affinity chips for high-throughput mass spectrometric analysis of glycated proteins. Rapid Commun. Mass Spectrom. 2007, 21, 1-6.
100. Tang, J.; Qi, D.; Yao, G.; Deng, C.; Zhang, X., On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis. Proteomics 2009, 9, 5046-5055.
101. Fenn, L. S.; McLean, J. A., Enhanced carbohydrate structural selectivity in ion mobility-mass spectrometry analyses by boronic acid derivatization. Chem. Commun. 2008, 5505-5507.
102. Cordes, D. B.; Gamsey, S.; Singaram, B., Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution. Angew. Chem., Int. Ed. Engl. 2006, 45, 3829-3832.
103. Freeman, R.; Bahshi, L.; Finder, T.; Gill, R.; Willner, I., Competitive analysis of saccharides or dopamine by boronic acid-functionalized CdSe-ZnS quantum dots. Chem. Commun. 2009, 764-766.
104. Sorensen, M. D.; Martins, R.; Hindsgaul, O., Assessing the terminal glycosylation of a glycoprotein by the naked eye. Angew. Chem. Int. Ed. 2007, 46, 2403-2407.
105. Ivanov, A. E.; Galaev, I. Y.; Mattiasson, B., Interaction of sugars, polysaccharides and cells with boronate-containing copolymers: from solution to polymer brushes. J. Mol. Recognit. 2006, 19, 322-331.
106. Cambre, J. N.; Roy, D.; Gondi, S. R.; Sumerlin, B. S., Facile strategy to well-defined water-soluble boronic acid (co)polymers. J. Am. Chem. Soc. 2007, 129, 10348-10349.
107. Chen, M.-L. Development of Boronic Acid Surface Based Microarray System and Its Applications. National Tsing Hua University, Hsinchu, 2009.
108. Dowlut, M.; Hall, D. G., An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J. Am. Chem. Soc. 2006, 128, 4226-4227.
109. Liang, P. H.; Wang, S. K.; Wong, C. H., Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants. J. Am. Chem. Soc. 2007, 129, 11177-11184.
110. Park, S.; Lee, M. R.; Shin, I., Construction of carbohydrate microarrays by using one-step, direct immobilizations of diverse unmodified glycans on solid surfaces. Bioconjugate Chem. 2009, 20, 155-162.
111. Lidstr□m, P.; Tierney, J.; Wathey, B.; Westman, J., Microwave assisted organic synthesis--a review. Tetrahedron 2001, 57, 9225-9283.
112. Lew, A.; Krutzik, P. O.; Hart, M. E.; Chamberlin, A. R., Increasing Rates of Reaction: Microwave-Assisted Organic Synthesis for Combinatorial Chemistry. J. Comb. Chem. 2001, 4, 95-105.
113. Wu, J. H.; Herp, A.; Wu, A. M., Defining carbohydrate specificity of Ricinus communis agglutinin as Gal beta 1-->4GlcNAc (II) > Gal beta 1-->3GlcNAc (I) > Gal alpha 1-->3Gal (B) > Gal beta 1-->3GalNAc (T). Mol. Immunol. 1993, 30, 333-339.
114. Knibbs, R. N.; Goldstein, I. J.; Ratcliffe, R. M.; Shibuya, N., Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid-specific lectins. J. Biol. Chem. 1991, 266, 83-88.
115. Gesslbauer, B.; Rek, A.; Falsone, F.; Rajkovic, E.; Kungl, A. J., Proteoglycanomics: tools to unravel the biological function of glycosaminoglycans. Proteomics 2007, 7, 2870-2880.
116. Raman, R.; Sasisekharan, V.; Sasisekharan, R., Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem. Biol. 2005, 12, 267-277.
117. Paz, J. L. d.; Seeberger, P. H., Deciphering the glycosaminoglycan code with the help of microarrays. Mol. BioSyst. 2008, 4, 707-711.
118. Faham, S.; Hileman, R. E.; Fromm, J. R.; Linhardt, R. J.; Rees, D. C., Heparin Structure and Interactions with Basic Fibroblast Growth Factor. Science 1996, 271, 1116-1120.
119. Capila, I.; Linhardt, R. J., Heparin-protein interactions. Angew. Chem. Int. Ed. 2002, 41, 391-412.
120. Beenken, A.; Mohammadi, M., The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 2009, 8, 235-253.
121. Gama, C. I.; Hsieh-Wilson, L. C., Chemical approaches to deciphering the glycosaminoglycan code. Curr. Opin. Chem. Biol. 2005, 9, 609-619.
122. Schlessinger, J.; Plotnikov, A. N.; Ibrahimi, O. A.; Eliseenkova, A. V.; Yeh, B. K.; Yayon, A.; Linhardt, R. J.; Mohammadi, M., Crystal Structure of a Ternary FGF-FGFR-Heparin Complex Reveals a Dual Role for Heparin in FGFR Binding and Dimerization. Mol. Cell 2000, 6, 743-750.
123. Cochran, S.; Li, C.; Ferro, V., A surface plasmon resonance-based solution affinity assay for heparan sulfate-binding proteins. Glycoconjugate J. 2009, 26, 577-587.
124. Penc, S. F.; Pomahac, B.; Winkler, T.; Dorschner, R. A.; Eriksson, E.; Herndon, M.; Gallo, R. L., Dermatan sulfate released after injury is a potent promoter of fibroblast growth factor-2 function. J. Biol. Chem. 1998, 273, 28116-28121.
125. Smith, E. A.; Thomas, W. D.; Kiessling, L. L.; Corn, R. M., Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J. Am. Chem. Soc. 2003, 125, 6140-6148.
126. Kiessling, L. L.; Gestwicki, J. E.; Strong, L. E., Synthetic Multivalent Ligands as Probes of Signal Transduction. Angew. Chem. Int. Ed. 2006, 45, 2348-2368.
127. Hermanson, G. T., Biotinylation Reagents. In Bioconjugate Techniques (2nd Edition), Academic Press: New York, 2008; pp 506-545.
128. Hermanson, G. T., Fluorescent Probes. In Bioconjugate Techniques (2nd Edition), Academic Press: New York, 2008; pp 396-497.