研究生: |
張家碩 |
---|---|
論文名稱: |
探討課室討論文化常規之形成暨對二年級不同成就學童正整數乘法學習影響之個案研究 Exploring the Norms of Classroom Discourse Affect the Children’s Multiplication Learning-Three Cases Study |
指導教授: | 蔡文煥 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 227 |
中文關鍵詞: | 社會常規 、社會數學常規 、正整數乘法 、國小二年級 |
外文關鍵詞: | social norms, sociomathematical norms, whole number multiplication, second graders of the elementary school |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討在數學課室討論文化中,社會常規以及社會數學常規之形成與相互關係。並進一步比較二年級不同成就學童在常規形成前後,提供正整數乘法的學習機會以及所產生的數學學習。
對22堂數學課進行質性分析,發現在師生與同儕互動中,呈現四個社會常規:1.解題紀錄之社會常規,2.提問題與建議適切性之社會常規,3.小組討論之社會常規,4.說明之社會常規。而社會數學常規在可接受的數學解釋和質疑辯證包含:1.回到題目說明解題紀錄,2.提出和數學意義相關之問題;數學的相同性與相異性包含,1.算式填充題意思的相同處,2.做法意義的同異處;數學的複雜性包含解題策略之多樣性。數學的有效性包含解題紀錄的有效性;數學的精緻性包含解題紀錄之完整性。
除此之外,本研究還發現:
1.社會常規以及社會數學常規的形成歷程是相互支撐;
2.社會數學常規會隨著數學內容不斷演化;
3.社會數學常規會衍生出另一個社會數學常規;
4.社會常規會影響學童的學習,而社會數學常規的形成,更是影響學童數學學習的重要因素;
5.社會數學常規對不同成就學童其需求性不相同;
6.「數學的有效性」與「數學的複雜性」對學童而言,為較高層次的社會數學常規。
對於未來的研究,建議可以探討不同數學內容的社會數學常規之同異處以及探討在課室討論中,有關學童問題解決、溝通、表徵、評析等方面的能力。
The purpose of this research was to investigate evolution of social norms and sociomathematical norms and the relationship between two these items in the discussion culture of mathematics classroom. Moreover, the study compared the different achievements of the second-grade students’ learning opportunities in multiplication, and the mathematical learning that arose before with after evolution of norms.
The study utilized qualitative methodology to analyze 22 mathematics classes videotaped. Consequently, the study obtained that there are four social norms emerging in the interaction of teacher-students and students-students: 1. the social norms of problem solving records, 2. the social norms of asking a question and a suggestion appropriately, 3. the social norms of the small-group interaction, 4. the social norms of explanation. Furthermore sociomathematical norms in acceptable mathematical explanation and justification include: 1. to explain the problem solving records by being back to the word problems, 2. to probe questions correlated with mathematical meaning. Mathematical sameness and difference norms include: 1. the sameness of meaning of fill-in the blank problems, 2. the sameness and difference of the meaning of solving ways. Mathematically sophisticated norms include variety of the strategies that solve a problem. Mathematical efficient norms include effectiveness of problem solving records. Mathematically elegant norms include integrality of problem solving records.
In addition, this study also has following conclusion:
1. Social norms and sociomathematical norms are interwoven and supported each other in the forming process.
2. Sociomathematical norms evolve with the mathematics content constantly.
3. Sociomathematical norms derive out other social sociomathematical norms.
4. The social norms affect the students’ learning, as for the influence of students’ mathematics learning processes, the formation of sociomathematical norms are more important the social norms.
5. Based on students’ various mathematics achievements, the need of the sociomathematical norms will be different as well.
6. For students, mathematically sophisticated norms and mathematically efficient norms are the higher level of the sociomathematical norms.
Regarding future researches, this study suggests that they can investigate the sameness and differences of sociomathematical norms in different mathematical contents, and to explore abilities of students’ problem solving, communication, representation, evaluation and analysis in the mathematical classroom discussion.
中文部分
王春展(1996)。情境學習理論及其在國小教育上的應用。國教學報,8,53-71。
王雅慧(2003)。社會常規之養成對學童解題表現影響之研究。未出版碩士論文。國立新竹師範學院數理研究所。
王義傑(2004)。一個國小三年級數學教室社對學常規發展歷程之個案研究。未出版碩士論文。國立新竹師範學院數理研究所。
吳幸宜 譯(1994)。Gredler E. M. (1991)原著。學習理論與教學應用(Learning and insruction : theory into practice, 2nd ed.)。臺北:心理。
林碧珍(1991)。國小兒童對乘除法應用問題之認知結構。新竹師範學院學報,5,221-288。
林碧珍、蔡文煥(2004):九年一貫數學能力指標的詮釋:全數的乘法。九十二年度國家科學委員會專題研究計畫成果報告。NSC92-2522-S-134-002)。
徐宗國 譯(2001)。Strauss A.與Corbin J. (1997)原著。質性研究概論(Basics of qualitative research : grounded theory procedures and techniques)。臺北市:巨流出版社。
康軒文教(2004)。國民小學數學教學指引、課本、習作(第三、四冊)。臺北:康軒。
教育部(1993)。國民小課程標準。臺北:教育部。
教育部(2000)。國民中小學九年一貫課程綱要-數學學習領域。臺北:教育部。
許美華(2001)。正整數乘法問的解題活動類型之變化-以一個國小二年級學童為例。國教學報,12,143-178。
許睦昌(2004)。課室討論文化下三年級學生除法解題之影響研究。未出版碩士論文。國立新竹師範學院數理研究所。
郭生玉(1991)。心理與教育研究法。臺北:精華。
陳淑娟(1999)。透過合作行動研究探討一個國小班級的數學活動。未出版碩士論文。國立嘉義師範學院數理教育研究所。
陳淑敏(1996)。從社會互動看皮亞傑與維高斯基的理論及其對幼教之啟示。百年校慶學術研討會暨皮亞傑與維高斯基百年誕辰紀念-皮亞傑與維高斯基的對話會議手冊。台北:台北市立師範學院兒童發展中心主辦。
陳淑琳(2002)。國小二年級學童乘法文字題解題歷程之研究-以屏東市一所國小為例。未出版碩士論文。國立屏東師範學院數理教育研究所。
陳燕珍 譯(2001)。(Kamii C.與Livingston S. J.)(1994)原著。重新建構孩子的數學能力-第3級:小學三年級(Young children continue to reinvent arithmetic-3rd grade : implications of Piaget’s theory)。臺北:光佑。
曾志華(1997)。社會互動與數學知識之建構:一個國小三年級數學教室之俗民誌研究。未出版碩士論文。國立嘉義師範學院數理教育研究所。
游麗卿(1999)。Vygotsky社會文化歷史理論:搜集和分析教室社會溝通的對話及其脈絡探究概念發展。國教學報,11,230-258。
游麗卿(2002)。從分析學生爭論解題紀錄的合理性探討社會數學規範的內涵。第六屆課程與教學論壇學術研討會論文集,1-1~1-21。
黃瑞琴(1997)。質的教育研究方法。臺北:心理出版社。
甯自強(1993)。單位量的變換(一)~正整數乘除法運思的啟蒙~。教師之友,34(1),27-34。
甯自強(1994)。國小低年級兒童數概念之發展研究(Ⅰ)-「數概念」類型研究(Ⅱ)。國科會研究計畫成果報告。NSC82-0111-S-023-001。
劉如芳(2002)。一個國小數學教室之社會數學常規發展歷程研究。未出版碩士論文。國立新竹師範學院數理研究所。
劉宏信(2004)。課室討論文化下三年級學童乘法解題表現之影響。未出版碩士論文。國立新竹師範學院數理研究所。
蔡文煥(2000)。兒童文化活動中的數學與參與程度。新竹師院學報,13,311-358。
蔡文煥(2003)。兒童每日活動中之數學文化化之發展研究。行政院國家科學委員會專題研究成果報告(編號:NSC91-2521-S-134-001)。
蔡文煥(2004)。九年一貫數學能力指標之詮釋:國小連結部分。國科會研究計畫成果報告。NSC92-2522-S-134-001。
蔡文煥(2004b)。發展數學課室之討論文化藉以提昇學童之智力自主性。行政院國家科學委員會專題研究成果報告(編號:NSC92-2521-S-134-002)。
蔡志超(2003)。一位低年級教師促進全班數學討論活動之探討。未出版碩士論文。國立新竹師範學院數理研究所。
蔡敏玲和陳正乾 譯(2001)。維高斯基(Vygotsky L. S.) (1997)原著。社會中的心智(Mind in society)。臺北市:心理。
蕭昭君(1998)。我國小學數學教育變革的推廣研究-人在改革現場的定位與定義。發表於花蓮師範學院初等教育學系論文發表會。
鍾靜(1996)。數學教室文化的新貌。發表於國立嘉義師範學院八十四學年數學教育研討會。
嚴祥鸞(1996)。參與觀察法。載於胡幼慧(主編),質性研究-理論、方法及本土女性研究實例(195-222頁)。台北:巨流。
英文部分
Anghileri, J. (1989). An investigation of young children’s understanding of multiplication. Educational Studies in Mathematics, 20, 367-385.
Balacheff, N. (1990). Towards a problematic for research on mathematics teaching. Journal for Research in Mathematics Education, 21(4), 258-272.
Bell, A., Greer, B., Grimison, L., & Mangan, C. (1989). Children’s performance on multiplicative word problems: Elements of a descriptive theory. Journal for Research in Mathematics Education, 20(5), 434-449.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42.
Christou, C., & Philippou, G. (1998). The developmental nature of ability to solve one-step word problems. Journal for Research in Mathematics Education, 29(4), 436-442.
Cobb, P. (1990). Multiple perspectives. In L. P. Steffe & T. Wood (Eds.), Transforming children’s mathematics education: International perspectives. (pp.19-29) Hillsdale, NJ: Lawrence Erlbaum Associates.
Cobb, P., & Bauersfeld, H. (1995) Emergence of mathematical meaning: Interaction in classroom cultures. Hillsdale, NJ: Erlbaum.
Cobb, P., & Yackel, E. (1996). Sociomathematical Norms, Argumentation, and Autonomy in Mathematics. Journal for Research in Mathematics Education, 27 (4), 458-477.
Cobb, P., McNeal, B, Yackel, E., & Wood, T. (1992). Characteristics of classroom mathematics traditions: An interactional analysis. American Educational Research Journal, 29, 573-604.
De Corte, E., Verschffel, L., & Van Coilie(1988). Influence of number size, problem structure, and response mode on children’s solutions of multiplication word problems. Journal of mathematical Behavior, 7(3), 197-216.
Fischbein, E., Deri, M., Nello, M.S., & Marino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Eduction, 16, 3-17.
Greer, B. (1992). Multiplication and division as models of situations. In D. Grouws (Eds.), Handbook of research on mathematics teaching learning. Reston, VA: NCTM; NY: Macmillan Publishing Co.
Hodge, L.L & Stephan, M. (1998, July). Relating Culture and Mathematical Activity: An Analysis of Sociomathematical Norms. Paper presented at the Conference of the International Group for the Psychology of Mathematics Education, Stellenbosch, South Africa.
Kamii, C. (1997). Basing early childhood education on Piaget’s constructivism. 兒童發展理論與幼教實務學術研討會手冊。國立新竹師範學院幼教系。
Kamii, C., Clark, F. B. & Dominick, A. (1997). The six national goals-A road to disappointment. 兒童發展理論與幼教實務學術研討會手冊。國立新竹師範學院幼教系。
Kazimi, E. & Stipek, D. (2001). Promoting Conceptual Thinking in four Upper-Elementary Mathematics Classrooms. The Elementary School Jorunal, 102(1), 59-80.
Kouba, V. (1989). Children’s solution strategies for equivalent set multiplication and division word problems. Journal for Research in Mathematics Education, 20(2), 147-158.
Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York: Cambridge University Press.
Mayer, R. E. (1987). Educational Psychology: A Cognitive Approach. Boston, MA: Little, Brown and Company.
McClain, K. & Cobb, P. (2001). An Analysis of Development Sociomathematical norms in One First-Grade Classroom. Journal for Research in Mathematics Education, 32(3), 236-266.
Mulligan, J. T. & Mitchelmore, M.C. (1997). Young children’s Intuitive models of multiplication and division. Journal for Research in Mathematics Education, 28(3), 309-330.
National Council of Teachers of Mathematics. (1991) Professional Standards for Teaching Mathematics. Reston, Va.: National Council of Teachers of Mathematics, 1991.
Nesher, P. & Peled, I. (1988). What children tell us about multiplication word problems. Journal of Mathematical Behavior, 7(3), 239-262.
Patton, M. Q. (1990). Qualitative Evaluation and Research Methods. Newbury Park, California, Sage Publications.
Schwartz, J. T. (1988). Intensive quantity and referent transforming arithmetic operations in the middle grades. Reston, VA: NCTM; NJ: Lawerence Erlbaum.
Smidt, S. & Weiser, W. (1995). Semantic structures of one-step word problems involving multiplication or division. Educational Studies in Mathematis, 28(1),55-72.
Tsai, W. H. (2001). Cultural activities as learning arenas for children to negotiate and make sense mathematical meanings. The Proceeding of the 25th International Group for the Psychology of Mathematics Education (pp.4.295-4.302). Utrecht, the Netherlands.
Vergnaud, G. (1988). Multiplicative structures. In M. Behr & J. Hiebert (Eds.), Number concepts and operations in the middle grades. Reston, VA: NCTM; NJ: Lawrence Erlbaum.
Voigt, J. (1944). Negotiation of mathematical meaning and learning mathematics. Educational Studies in mathematics, 26, 275-298.