簡易檢索 / 詳目顯示

研究生: 陳浩元
Chen, Hao-Yuan
論文名稱: 以超解析度提高冠狀動脈造影影像品質和分割準確性
Improving Coronary Angiography Image Quality and Segmentation Accuracy Using Super Resolution
指導教授: 李哲榮
Lee, Che-Rung
口試委員: 曾柏軒
Tseng, Po-Hsuan
李志國
Lee, Chih-Kuo
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 36
中文關鍵詞: 超解析度冠狀動脈造影影像品質血管分割
外文關鍵詞: Coronary, Angiography
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • X射線冠狀動脈造影(XCA)是診斷心血管疾病的重要工具。然而,由於圖像解析度不足、視覺評估過於主觀且缺乏量化。因此,本文探討了超解析(SR)技術如何幫助提升 XCA 圖像的質量。我們發現,通過遷移學習技術和選擇當前適合的 SR 模型,可以顯著改善XCA圖像的質量。然而,當 SR 增強的圖像用於血管分割時,可能會產生不良輸出。為了解決這個問題,我們提出了一個新模型 super resolution enhanced TransUNet(SRE-TransUNet),該模型結合了 TransUNet 的架構和高解析度的 XCA 圖像。實驗結果表明,SRE-TransUNet 結合 Real-ESRGAN+ 在 CAG 數據集的模糊圖像上可以達到88.30%的F1分數,比現有技術方法高出1.02%。


    X-ray coronary angiography (XCA) is an important tool to diagnose the cardiovascular diseases. However, due to insufficient image resolution, visual assessment is subjective and lacks quantification. In this paper, we investigate how the super-resolution (SR) technology can help the image enhancement for XCA. We found that with transfer learning techniques and carefully selection of SR models, the quality of XCA images can be improved significantly. However, when the SR enhanced images are utilized for vessel segmentation, they could produce undesired outputs. To solve this problem, we proposed a new model, called Super-Resolution Enhanced TransUNet (SRE-TransUNet), which combines the architecture of TransUNext and the high-resolution XCA images. Experimental results show that SRE-TransUNet with Real-ESRGAN+ can reach F1 score 88.30%, on blurry images of CAG dataset, which is 1.02% higher than state-of-the-art methods.

    中文摘要 1 Abstract 2 誌謝 3 List of Figures 6 List of Tables 7 1 Introduction 8 2 Related Work 11 2.1 Image Super Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Super Resolution In Medical Images . . . . . . . . . . . . . . . . . . . . 12 2.3 Coronary Vessel Segmentation . . . . . . . . . . . . . . . . . . . . . . . 12 3 Super-resolution Models for XCA 14 3.1 Image Enhancement of XCA by Super-resolution . . . . . . . . . . . . 14 3.1.1 Datasets for Evaluation . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.2 SR Models and Evaluation Metrics . . . . . . . . . . . . . . . . 15 3.1.3 Quantitative Comparisons on Super Resolution in XCA Images 15 3.1.4 Qualitative Comparisons on Super Resolution in XCA Images . 16 3.2 Training Problems of the Vessel Segmentation Using SR Images . . . . 20 3.2.1 Evaluation Metrics on Segmentation . . . . . . . . . . . . . . . 21 3.2.2 Analysis of Segmentation Results . . . . . . . . . . . . . . . . . 21 3.3 SRE-TransUNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 CNN-Transformer Hybrid Encoder . . . . . . . . . . . . . . . . 23 3.3.2 Skip Connection . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.3 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.4 SR Module Block . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Experiments 26 4.1 Datasets and Implementation Details . . . . . . . . . . . . . . . . . . . 26 4.2 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3.1 Comparison of segmentation performance of models . . . . . . . 29 4.3.2 Comparison of different SR models in SRE-TransUNet . . . . . 30 4.4 Evaluation on DCA1 dataset . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Conclusion and Future Work 32 References 33

    [1] Michela Di Cesare et al. “The Heart of the World”. Global Heart 19.1 (2024),
    p. 11. doi: 10.5334/gh.1288.
    [2] David J Piñeiro et al. “World Heart Day 2023: Knowing your heart”. Indian
    J Med Res 158.3 (2023), pp. 213–215. doi: \url{10.4103/ijmr.ijmr_
    1689_23}.
    [3] Michael R. Rudnick. Prevention of contrast-associated acute kidney injury related to angiography. Ed. by Paul M. Palevsky. UpToDate. Updated Nov 27,
    2023. 2023. url: https://www.uptodate.com/contents/preventionof-contrast-associated-acute-kidney-injury-related-toangiography (visited on 05/2024).
    [4] Stella K. Kang. Diagnosis and treatment of an acute reaction to a radiologic
    contrast agent. Ed. by Jr N. Franklin Adkinson and Anna M. Feldweg. UpToDate. Updated Jun 06, 2024. 2024. url: https://www.uptodate.com/
    contents/diagnosis-and-treatment-of-an-acute-reactionto-a-radiologic-contrast-agent (visited on 06/26/2024).
    [5] Matthew S. Davenport and Jeffrey H. Newhouse. Patient evaluation prior to
    oral or iodinated intravenous contrast for computed tomography. Ed. by Herbert Y. Kressel. UpToDate. Updated May 14, 2024. 2024. url: https : / /
    www.uptodate.com/contents/patient- evaluation- prior- tooral - or - iodinated - intravenous - contrast - for - computed -
    tomography (visited on 06/26/2024).
    [6] Hayit Greenspan. “Super-Resolution in Medical Imaging”. The Computer Journal 52.1 (Feb. 2008), pp. 43–63. issn: 0010-4620. doi: 10.1093/comjnl/
    bxm075. eprint: https : / / academic . oup . com / comjnl / article -
    pdf/52/1/43/1153004/bxm075.pdf. url: https://doi.org/10.
    1093/comjnl/bxm075.
    [7] Xintao Wang et al. “Real-ESRGAN: Training Real-World Blind Super-Resolution
    with Pure Synthetic Data”. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). 2021, pp. 1905–1914. doi: 10 . 1109 /
    ICCVW54120.2021.00217.
    [8] Jianyi Wang et al. Exploiting Diffusion Prior for Real-World Image SuperResolution. 2023. arXiv: 2305.07015 [cs.CV]. url: https://arxiv.
    org/abs/2305.07015.
    [9] Marcos V. Conde et al. “Swin2SR: SwinV2 Transformer for Compressed Image
    Super-Resolution and Restoration”. Computer Vision – ECCV 2022 Workshops.
    Ed. by Leonid Karlinsky, Tomer Michaeli, and Ko Nishino. Cham: Springer
    Nature Switzerland, 2023, pp. 669–687. isbn: 978-3-031-25063-7.
    [10] Zongsheng Yue, Jianyi Wang, and Chen Change Loy. “ResShift: efficient diffusion model for image super-resolution by residual shifting”. Proceedings of the
    37th International Conference on Neural Information Processing Systems. NIPS
    ’23. New Orleans, LA, USA: Curran Associates Inc., 2024.
    [11] Lingchen Sun et al. Improving the Stability of Diffusion Models for Content
    Consistent Super-Resolution. 2023. arXiv: 2401 . 00877 [eess.IV]. url:
    https://arxiv.org/abs/2401.00877.
    [12] Junjie Ke et al. “MUSIQ: Multi-scale Image Quality Transformer”. 2021 IEEE/CVF
    International Conference on Computer Vision (ICCV). 2021, pp. 5128–5137.
    doi: 10.1109/ICCV48922.2021.00510.
    [13] Sidi Yang et al. “MANIQA: Multi-dimension Attention Network for No-Reference
    Image Quality Assessment”. 2022 IEEE/CVF Conference on Computer Vision
    and Pattern Recognition Workshops (CVPRW). 2022, pp. 1190–1199. doi: 10.
    1109/CVPRW56347.2022.00126.
    [14] Jianyi Wang, Kelvin C.K. Chan, and Chen Change Loy. “Exploring CLIP for
    assessing the look and feel of images”. Proceedings of the Thirty-Seventh AAAI
    Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative
    Applications of Artificial Intelligence and Thirteenth Symposium on Educational
    Advances in Artificial Intelligence. AAAI’23/IAAI’23/EAAI’23. AAAI Press,
    2023. isbn: 978-1-57735-880-0. doi: 10.1609/aaai.v37i2.25353. url:
    https://doi.org/10.1609/aaai.v37i2.25353.
    [15] Alejandro Frangi et al. “Multiscale Vessel Enhancement Filtering”. Med. Image
    Comput. Comput. Assist. Interv. 1496 (Feb. 2000).
    [16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
    Networks for Biomedical Image Segmentation”. Medical Image Computing and
    Computer-Assisted Intervention – MICCAI 2015. Ed. by Nassir Navab et al.
    Cham: Springer International Publishing, 2015, pp. 234–241. isbn: 978-3-319-
    24574-4.
    [17] Hu Cao et al. “Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation”. Computer Vision – ECCV 2022 Workshops. Ed. by Leonid Karlinsky, Tomer Michaeli, and Ko Nishino. Cham: Springer Nature Switzerland,
    2023, pp. 205–218. isbn: 978-3-031-25066-8.
    [18] Jieneng Chen et al. “TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation”. ArXiv abs/2102.04306 (2021). url: https://api.
    semanticscholar.org/CorpusID:231847326.
    [19] R. Keys. “Cubic convolution interpolation for digital image processing”. IEEE
    Transactions on Acoustics, Speech, and Signal Processing 29.6 (1981), pp. 1153–
    1160. doi: 10.1109/TASSP.1981.1163711.
    [20] Chao Dong et al. “Image Super-Resolution Using Deep Convolutional Networks”.
    IEEE Transactions on Pattern Analysis and Machine Intelligence 38.2 (2016),
    pp. 295–307. doi: 10.1109/TPAMI.2015.2439281.
    [21] Yan Hu et al. “SuperVessel: Segmenting High-Resolution Vessel from LowResolution Retinal Image”. Pattern Recognition and Computer Vision. Ed. by
    Shiqi Yu et al. Cham: Springer Nature Switzerland, 2022, pp. 178–190. isbn:
    978-3-031-18910-4.
    [22] Zhonghua Sun and Curtise K.C. Ng. “Finetuned Super-Resolution Generative
    Adversarial Network (Artificial Intelligence) Model for Calcium Deblooming
    in Coronary Computed Tomography Angiography”. Journal of Personalized
    Medicine 12 (Aug. 2022), p. 1354. doi: 10.3390/jpm12091354.
    [23] Makoto Orii et al. Super-resolution deep learning reconstruction at coronary
    computed tomography angiography to evaluate the coronary arteries and instent lumen: An initial experience. July 2022. doi: 10.21203/rs.3.rs1875541/v2.
    [24] Tim Jerman et al. “Enhancement of Vascular Structures in 3D and 2D Angiographic Images”. IEEE Transactions on Medical Imaging 35.9 (2016), pp. 2107–
    2118. doi: 10.1109/TMI.2016.2550102.
    [25] Shoujun Zhou et al. “Automatic segmentation of coronary angiograms based
    on fuzzy inferring and probabilistic tracking”. Biomedical engineering online 9
    (Aug. 2010), p. 40. doi: 10.1186/1475-925X-9-40.
    [26] Rashindra Manniesing, Max Viergever, and W.J. Niessen. “Vessel Axis Tracking
    Using Topology Constrained Surface Evolution”. Medical Imaging, IEEE Transactions on 26 (Apr. 2007), pp. 309 –316. doi: 10.1109/TMI.2006.891503.
    [27] Jingyang Zhang et al. “Vesselness-constrained robust PCA for vessel enhancement in X-ray coronary angiograms”. Physics in Medicine and Biology 63 (July
    2018). doi: 10.1088/1361-6560/aacddf.
    [28] Binjie Qin et al. “Robust PCA Unrolling Network for Super-Resolution Vessel
    Extraction in X-Ray Coronary Angiography”. IEEE Transactions on Medical
    Imaging 41.11 (2022), pp. 3087–3098. doi: 10.1109/TMI.2022.3177626.
    [29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
    Networks for Biomedical Image Segmentation”. Medical Image Computing and
    Computer-Assisted Intervention – MICCAI 2015. Ed. by Nassir Navab et al.
    Cham: Springer International Publishing, 2015, pp. 234–241. isbn: 978-3-319-
    24574-4.
    [30] Ozan Oktay et al. “Attention U-Net: Learning Where to Look for the Pancreas”.
    Medical Imaging with Deep Learning. 2018. url: https://openreview.
    net/forum?id=Skft7cijM.
    [31] National Taiwan University Medical Imaging. CAG biomedicalimages. 2021.
    url: https://scidm.nchc.org.tw/dataset/cag.
    [32] Fernando Cervantes-Sanchez et al. “Automatic Segmentation of Coronary Arteries in X-ray Angiograms using Multiscale Analysis and Artificial Neural
    Networks”. Applied Sciences 9.24 (2019). issn: 2076-3417. doi: 10 . 3390 /
    app9245507. url: https://www.mdpi.com/2076-3417/9/24/5507.
    [33] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for
    Image Recognition at Scale”. International Conference on Learning Representations. 2021. url: https://openreview.net/forum?id=YicbFdNTTy.
    [34] Kaiming He et al. “Deep Residual Learning for Image Recognition”. 2016 IEEE
    Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–
    778. doi: 10.1109/CVPR.2016.90.
    [35] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. 2009
    IEEE Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–
    255. doi: 10.1109/CVPR.2009.5206848.
    [36] Zongwei Zhou et al. “UNet++: A Nested U-Net Architecture for Medical Image Segmentation”. Deep Learning in Medical Image Analysis and Multimodal
    Learning for Clinical Decision Support. Ed. by Danail Stoyanov et al. Cham:
    Springer International Publishing, 2018, pp. 3–11. isbn: 978-3-030-00889-5.
    [37] Liang-Chieh Chen et al. “Rethinking Atrous Convolution for Semantic Image
    Segmentation”. ArXiv abs/1706.05587 (2017). url: https://api.semanticscholar.
    org/CorpusID:22655199.
    [38] Wentao Liu et al. “Multiscale Attention Aggregation Network for 2D Vessel Segmentation”. ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
    Speech and Signal Processing (ICASSP). 2022, pp. 1436–1440. doi: 10.1109/
    ICASSP43922.2022.9747207.

    QR CODE