研究生: |
陳義洋 Yi-Yang Chen |
---|---|
論文名稱: |
利用原子力顯微鏡在溶液中探討線狀噬菌體和大腸桿菌之交互作用 Investigate the Interaction between Filamentous Bacteriophage and Escherichia coli by Atomic Force Microscopy in Liquid |
指導教授: |
游萃蓉
Tri-Rung Yew |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 原子力顯微鏡 、噬菌體 、大腸桿菌 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中利用原子力顯微鏡(atomic force microscopy, AFM)在細菌近生理狀態下(near-physiological environment)觀察大腸桿菌(Escherichia coli, E. coli) 和線狀噬菌體M13 (filamentous bacteriophage, phage)之交互作用。利用原子力顯微鏡之力曲線(force-distance curve, f-d curve)可以藉由虎克定律(Hooke’s law)以及赫茲模型(Hertz model),去計算出細菌在感染前後之有效彈簧常數 (effective spring constant)以及楊氏係數(Young’s modulus)的變化,發現當細菌被噬菌體感染後有效彈簧常數以及楊氏係數,兩者都有些微的下降。同時利用原子力顯微鏡優異的成像能力,比較在水中大腸桿菌被噬菌體M13感染前感染後的形貌以及粗糙度。比較兩者數據後發現大腸桿菌在被感染後表面變得比較平坦,少了一些凸起物,推測原因是由於細菌表面在被噬菌體感染後,遭受了一些破壞。
過去研究中提到,當細菌被噬菌體感染後,表面的脂多醣(lipopolysacchride, LPS)會被破壞、釋放。為了證明大腸桿菌被噬菌體感染後表面的LPS會被破壞、釋放,我們使用乙二胺四乙酸二鈉 (ethylenediaminetetraacetates, EDTA)對大腸桿菌做處理,EDTA為二價離子螯合劑,EDTA使得細菌將表面的LPS釋放,將被處理過的大腸桿菌和被感染過的大腸桿菌相比較,可發現不僅在機械性質方面雷同,大腸桿菌膜表面同樣呈現平坦與光滑,因此推斷此一變化的確可能肇因於表面LPS的破壞。除此之外,本研究也利用原子力顯微鏡探針輕壓大腸桿菌並定住,以量取研究當細菌被噬菌體感染後是否會對此壓力有一些不同的現象產生。本研究主要是希望利用原子力顯微鏡探討當細菌被噬菌體感染後之機械性質變化,並希望藉由此一研究能夠發揮原子力顯微鏡在生物研究之優勢,且利用其允許生物在近生理環境下具高解析與可對表面機械性質分析來觀察到其他儀器所不能觀察到的現象。
第六章 參考文獻
1. Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Phys Rev Lett, 1986. 56(9): pp. 930-933.
2. Dufrene, Y.F., Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Curr Opin Microbiol, 2003. 6(3): pp. 317-323.
3. Gaboriaud, F., et al., Surface structure and nanomechanical properties of Shewanella putrefaciens bacteria at two pH values (4 and 10) determined by atomic force microscopy. J Bacteriol, 2005. 187(11): pp. 3864-3868.
4. Gaboriaud, F. and Y.F. Dufrene, Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces. Colloids Surf B Biointerfaces, 2007. 54(1): pp. 10-19.
5. Caro, L.G. and M. Schnos, The attachment of the male-specific bacteriophage F1 to sensitive strains of Escherichia coli. Proc Natl Acad Sci U S A, 1966. 56(1): pp. 126-132.
6. Bradley, D.E. and C.A. Dewar, Intracellular changes in cells of Escherichia coli infected with a filamentous bacteriophage. J Gen Virol, 1967. 1(2): pp. 179-188.
7. Brinton, C.C., Jr., P. Gemski, Jr., and J. Carnahan, A New Type of Bacterial Pilus Genetically Controlled by the Fertility Factor of E. Coli K 12 and Its Role in Chromosome Transfer. Proc Natl Acad Sci U S A, 1964. 52: pp. 776-783.
8. Valentine, R.C. and M. Strand, Complexes of F-Pili and Rna Bacteriophage. Science, 1965. 148: pp. 511-513.
9. Jacobson, A., Role of F pili in the penetration of bacteriophage fl. J Virol, 1972. 10(4): pp. 835-843.
10. Novotny, C., W.S. Knight, and C.C. Brinton, Jr., Inhibition of bacterial conjugation by ribonucleic acid and deoxyribonucleic acid male-specific bacteriophages. J Bacteriol, 1968. 95(2): pp. 314-326.
11. Novotny, C., et al., Functions of F pili in mating-pair formation and male bacteriophage infection studies by blending spectra and reappearance kinetics. J Bacteriol, 1969. 98(3): pp. 1307-1319.
12. Roy, A. and S. Mitra, Increased fragility of Escherichia coli after infection with bacteriophage M13. J Virol, 1970. 6(3): pp. 333-9.
13. NanoScope Command Reference Manual. 1997, USA: Digital Instrument, Inc. Chapter 4 & 5. pp. 4.1- 5.13.
14. Bonnell, D.A., Scnning probe microscopy and spectroscopy. 2nd ed. Theory, Technique, and Application. 2001, Canada: A John Wiley & Son, Inc. Chapter 9. pp. 289-336.
15. Dimension 3100 Instruction Manual. 1997, USA: Digital Instrument, Inc. Chapter 8. pp. 8.1-8.37.
16. Colton, R.J., Procedures in Scanning Probe Microscopies. 1998, England: John Wiley & Sons. Part 7. pp. 385- 500.
17. Hutter, J.L. and J. Bechhoefer, Calibration of Atomic-Force Micrscopes Tips. Review of Scientific Instruments, 1993. 64(7): pp. 1868-1873.
18. Sullivan, C.J., et al., Comparison of the indentation and elasticity of E-coli and its spheroplasts by AFM. Ultramicroscopy, 2007. 107(10-11): pp. 934-942.
19. Bolshakova, A.V., et al., Comparative studies of bacteria with an atomic force microscopy operating in different modes. Ultramicroscopy, 2001. 86(1-2): pp. 121-128.
20. Doktycz, M.J., et al., AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy, 2003. 97(1-4): pp. 209-216.
21. Sullivan, C.J., et al., Mounting of Escherichia coli spheroplasts for AFM imaging. Ultramicroscopy, 2005. 105(1-4): pp. 96-102.
22. Gad, M. and A. Ikai, Method for immobilizing microbial cells on gel surface for dynamic AFM studies. Biophysical Journal, 1995. 69(6): pp. 2226-2233.
23. Amro, N.A., et al., High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: Structural basis for permeability. Langmuir, 2000. 16(6): pp. 2789-2796.
24. Arnoldi, M., et al., Bacterial turgor pressure can be measured by atomic force microscopy. Physical Review E, 2000. 62(1): pp. 1034-1044.
25. Gaboriaud, F., et al., Multiscale dynamics of the cell envelope of Shewanella putrefaciens as a response to pH change. Colloids Surf B Biointerfaces, 2006. 52: pp. 108-116.
26. Velegol, S.B. and B.E. Logan, Contributions of bacterial surface polymers, electrostatics, and cell elasticity to the shape of AFM force curves. Langmuir, 2002. 18(13): pp. 5256-5262.
27. Vadillo-Rodriguez, V., T.J. Beveridge, and J.R. Dutcher, Surface viscoelasticity of individual Gram-negative bacterial cells measured using atomic force microscopy. J Bacteriol, 2008. 190(12): pp.4225-4232.
28. Shu, A.C., et al., Evidence of DNA Transfer through F-pilus Channels during Escherichia coli Conjugation. Langmuir, 2008. 24: pp. 6796-6802.
29. Voll, M.J. and L. Leive, Release of lipopolysaccharide in Escherichia coli resistant to the permeability increase induced by ethylenediaminetetraacetate. J Biol Chem, 1970. 245(5): pp. 1108-1114.
30. Ong, Y.L., et al., Adhesion forces between E-coli bacteria and biomaterial surfaces. Langmuir, 1999. 15(8): pp. 2719-2725.
31. Burks, G.A., et al., Macroscopic and nanoscale measurements of the adhesion of bacteria with varying outer layer surface composition. Langmuir, 2003. 19(6): pp. 2366-2371.
32. Atabek, A. and T.A. Camesano, Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas aeruginosa. Journal of Bacteriology, 2007. 189(23): pp. 8503-8509.
33. Salton, M.R., Structure and function of bacterial cell membranes. Annu Rev Microbiol, 1967. 21: pp. 417-42.
34. Sachs, F., Probing the double layer: Effect of image forces on AFM. Biophysical Journal, 2006. 91(2): pp. L14-L15.