簡易檢索 / 詳目顯示

研究生: 吳信輝
Wu, Hsin-Hui
論文名稱: MDC1與CHK2中 FHA結構域在DNA損傷反應之結構與功能研究
Structural and Functional Study of FHA Domain of MDC1 and CHK2 in DNA Damage Response
指導教授: 蔡明道
Tsai, Ming-Daw
呂平江
Lyu, Ping-Chiang
口試委員: 孫玉珠
Sun, Yuh-Ju
冀宏源
Chi, Hung-Yuan
廖泓鈞
Liaw, Hung-Jiun
蘇士哲
Sue, Shih-Che
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 117
中文關鍵詞: FHA結構域DNA損傷反應MDC1蛋白CHK2激酶蛋白質結晶
外文關鍵詞: FHA domain, DNA damage response, MDC1, CHK2, protein crystallography
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文著重在DNA損傷反應中,MDC1與CHK2結合結構的解析。MDC1蛋白在DNA損傷反應中藉由與許蛋白在DNA損傷反應中藉由與許多蛋白交互作用,扮演起一個傳遞者的角色。MDC1蛋白不僅可以與ATM及MRE11這種感應蛋白結合(sensor proteins),也可以與像CHK2這種作用蛋白(effector proteins)結合。細胞會透過複雜的磷酸化訊息傳遞來感應、誘發及調控DNA損傷反應,進而讓細胞進行DNA修復、細胞週期停滯或者細胞凋亡。先前的研究顯示MDC1-FHA結構域會與CHK2的第68個磷酸化賴氨酸結合,此位置也可以與其本身的FHA結構域結合,讓CHK2形成雙體化而活化。為了瞭解其分子機制,我們解出MDC1-FHA結構域及其結合CHK2 第68個磷酸化賴氨酸胜肽的原子結構。顯然地,無論在溶液或晶體中MDC1-FHA結構域皆形成雙體的構型。結構及蛋白結合分析都支持MDC1-FHA對於pThr+3配位體的專一性,也理解MDC1如何與CHK2結合。原子結構提供MDC1-FHA雙體結合介面的資訊,因此我們挑選了破懷雙體卻還保有與磷酸化賴氨酸結合能力的MDC1-FHA突變體來進行雙體功能的研究。免疫共沉澱法及split-GFP分析顯示這些MDC1蛋白的突變體在細胞內無法形成雙體。在MDC1蛋白knockdown的細胞中,這些突變體對於輻射比較敏感。結果顯示在DNA損傷的位置,必須由MDC1蛋白的雙體構型來調控其蛋白的動態平衡,才能正確地傳遞DNA損傷的訊號。實驗結果暗示MDC1的雙體結構可能扮演著超級鷹架的角色去與DNA損傷有關的蛋白結合。另外, 雙體化後的自我磷酸化是激酶活化的普遍機制。在DNA損傷後,ATM激酶會使CHK2激酶的第68個賴氨酸磷酸化,接著CHK2激酶本身的FHA結構域會與磷酸化的賴氨酸結合,使CHK2雙體化,進而讓其T-loop自我磷酸化來讓CHK2激酶活化。然而,整個活化過程的分子機制還不是很清楚。因此,我們利用native chemical ligation的方式生產出第68個賴氨酸磷酸化的CHK2激酶,然後結合分析型超高速離心與小角度X光散射來瞭解其生物物理特性與結構。結果顯示CHK2激酶的第68個賴氨酸磷酸化在穩定CHK2雙體中扮演很重要的角色,而小角度X光散射的結果也說明了此雙體化可能讓兩個激酶處在正確的位置,使T-loop的自我磷酸化更有效率。


    This work focuses on the structural basis of the FHA domain (forkhead-associated domain) in the interaction between MDC 1 (mediator of DNA damage checkpoint 1) and CHK2 (checkpoint kinase 2) upon DNA damage. The MDC1 protein functions as a key mediator that interacts with multiple proteins involved in DNA damage response (DDR) pathway. It binds to not only sensor proteins like ATM and MRE11, but also effector proteins such as CHK2. The complicated phospho-signaling network controls the sensing, initiating, and mediating steps that lead to downstream repair pathways, cell-cycle checkpoints, and apoptosis. Previously, the CHK2 binding site for MDC1-FHA was shown to be pThr68 (the same site recognized by the FHA domain of CHK2 for dimerization and activation of CHK2). To elucidate the molecular mechanism of MDC1-CHK2 interaction, we solved crystal structures of mouse MDC1-FHA and its complex with a human CHK2 peptide containing pThr68. Surprisingly, MDC1-FHA exists as an intrinsic dimer in solution and in crystals. Structural and binding analyses support the pThr+3 ligand specificity of FHA domains, and provide structural insight into MDC1-CHK2 interaction. In order to test whether the dimerization of MDC1-FHA directs MDC1 function in vivo, we selected different MDC1-FHA mutants with disrupted dimerization while maintaining the pThr-binding ability. The full-length MDC1 protein containing such mutations not only failed to dimerize in vivo as suggested by split-GFP system, but also failed to rescue cellular radio-sensitivity caused by MDC1 knockdown. In addition, our result shows that the dimeric feature affects the MDC1 protein turnover rate on DNA lesion sites by which the accurate DNA damage signal can be executed. It implies that the dimeric feature may play a role of super-scaffold to interact with other proteins after DNA damage. In addition, dimerization-dependent trans autophophorylation is a common mechanism to active kinase. Activated ATM kinase phosphorylates CHK2 on Thr68 to trigger CHK2 activation in DNA damage. The pThr68 interacts with its FHA domain, leading to dimerization and T-loop autophosphorylation. However, the molecular basis of this activation process remains unclear. Here we use site-specifically pThr68 CHK2 for biophysical characterization by AUC and provide structural explanation by SAXS analyses. The results show that pThr68 plays a critical role to stabilize CHK2 dimerization. The SAXS results show that pThr68-mediated dimerization is possible to bring two kinases to correct orientation for efficient activation loop trans autophosphorylation.

    論文指導教授推薦書 ……………………………….............................................. I 口試委員審定書 …….………………………….....................................................II Acknowledgements ………………………………….............................................. III 中文摘要 ………......................................................................................................IV English abstract ………………………....................................................................VI Contents ………………………..............................................................................VIII List of Figures ………………………................................................................... XIII List of Tables ……………………………………………………………………... XV List of Abbreviations …………………………………………………………….XVI Chapter 1 Introduction 1.1 The DNA Damage Response ………………………………………..…………1 1.2 The DNA repair machinery …………………..……………………………….. 2 1.3 Introduction to MDC1 ………………..……………………………………….. 4 1.3.1 The C-terminal tBRCT domain…………………………………………… 6 1.3.1.1 53BP1 binding with MDC1-tBRCT …………………………………. 7 1.3.1.2 APC/C binding with MDC1-tBRCT ………………………………… 8 1.3.1.3 Topoisomerase IIα binding with MDC1-tBRCT ……………………. 9 1.3.2 The PST repeat region ……………………………………………………10 1.3.3 The TQXF repeats ………………………………………………………..11 1.3.4 The SDT repeat region …………………………………………………...12 1.3.5 The FHA domain …………………………………………………………13 1.3.5.1 MDC1-FHA interaction with ATM …………………………………14 1.3.5.2 MDC1-FHA interaction with CHK2 ………………………………...15 1.3.5.3 MDC1-FHA interaction with Rad51 ……………………………….. 17 Chapter 2 Structural delineation of MDC1-FHA domain binding with CHK2-pThr68 2.1 Introduction ………………………………………………………………….. 18 2.2 Materials and Methods ………………………………………………………..19 2.2.1 Protein Expression and Purification …………………………………….. 19 2.2.2 Crystallization and X-ray data collection ……………………………….. 20 2.2.3 Structure Determination and Refinement ………………………………...22 2.2.4 Isothermal Titration Calorimetry ………………………………………...24 2.2.5 Accession Codes …………………………………………………………25 2.3 Results and Discussion ………………………………………………………. 25 2.3.1 The overall structures of mMDC1-FHA domain binding with and without hCHK2-pThr68 ………………………………………………………….. 25 2.3.2 The dimeric structure of mMDC1-FHA domain binding with and without hCHK2-pThr68 ………………………………………………………….. 30 2.3.3 Functional implication regarding head-to-tail dimerization …………….. 33 2.3.4 The interaction of mMDC1-FHA and hCHK2-pThr68 peptide ………….34 2.3.5 Conformational changes upon pThr binding ……………………………. 36 2.3.6 Structural comparison of pThr peptide binding to other FHA proteins ….37 2.3.7 The MDC1-FHA domain interact with pThr, not pSer …………………. 39 2.3.8 The crystal packing issue for a dimeric mMDC1-FHA binding with hCHK2-pThr68 …………………………………………………………...42 2.3.9 Phosphorylation issue of MDC1-Thr98 ………………………………….44 2.4 Conclusion …………………………………………………………………… 45 Chapter 3 The role of FHA domain of human MDC1 in cellular DNA damage responses 3.1 Introduction ………………………………………………………………….. 47 3.2 Materials and Methods ………………………………………………………. 48 3.2.1 Plasmids and siRNAs …………………………………………………… 48 3.2.2 Protein Expression and Purification …………………………………….. 51 3.2.3 Size Exclusion Chromatography (SEC) ………………………………… 52 3.2.4 Analytical Ultracentrifugation (AUC) …………………………………...52 3.2.5 Isothermal Titration Calorimetry (ITC) ………………………………….53 3.2.6 Circular Dichroism (CD) ………………………………………………... 53 3.2.7 Size Exclusion Chromatography Combined with Multi-angle Light Scattering (SEC-MALS) ………………………………………………….54 3.2.8 Immunoprecipitation and Immunoblotting Experiments ………………...55 3.2.9 Cell Culture and Gene Transfection …………………………………….. 56 3.2.10 Split-GFP System ……………………………………………………….56 3.2.11 Clonogenic Survival Assay ……………………………………………..57 3.2.12 Laser Micro-irradiation (LMI) and Fluorescent Recovery after Photobleaching (FRAP) ………………………………………………...57 3.3 Results and Discussion ………………………………………………………..43 3.3.1 Disruption of the dimeric structure of mMDC1-FHA domain via mutated interface residues …………………………………………………………58 3.3.2 Disruption of the dimeric structure of hMDC1-FHA domain via mutated interface residues …………………………………………………………62 3.3.3 MDC1 self-association occurs via FHA domain in HeLa cells ………….70 3.3.4 MDC-FHA dimeric interface is important for MDC1 self-association in human cell ………………………………………………………………...72 3.3.5 The MDC1 dimerization and the pThr binding ability of its FHA are necessary for normal radio-resistance …………………………………....75 3.3.6 The MDC1 dimerization mediate MDC1 turnover in cellular DNA damage responses ………………………………………………………………….77 3.4 Conclusion …………………………………………………………………….81 Chapter 4 CHK2 pThr68 mediated dimerization enhances CHK2 autophosphorylation 4.1 Introduction …………………………………………………………………...83 4.2 Materials and Methods ………………………………………………………..85 4.2.1 Cloning, Expression, and Purification ……………………………………85 4.2.2 Peptide Synthesis and Phosphopeptide Ligation …………………………86 4.2.3 Analytical Ultracentrifugation (AUC) …………………………………...87 4.2.4 Autophosphorylation Assays ……………………………………………. 88 4.2.5 Phos-tag SDS-PAGE analysis ……………………………………………88 4.2.6 In-gel digestion and mass spectrometry analysis ………………………...88 4.2.7 Small Angle X-ray Scattering (SAXS) …………………………………..89 4.3 Results and Discussion ………………………………………………………. 90 4.3.1 Overexpression of recombinant CHK2 without phosphorylation ………. 90 4.3.2 Generation of pThr68 CHK2lig by native chemical ligation (NCL) …….93 4.3.3 Phosphorylated Thr68 of CHK2 stabilize dimerization ………………… 96 4.3.4 The pThr68 CHK2lig 63-502 forms a stable dimer based on SAXS study ………………………………………………………………………98 4.3.5 Phosphorylated Thr68 enhances CHK2 autophosphorylation ………….100 4.4 Conclusion …………………………………………………………………...103 Reference …………………………………………………………………………..105

    [1] Zhou, B. B., and Elledge, S. J. (2000) The DNA damage response: putting checkpoints in perspective, Nature 408, 433-439.
    [2] Khanna, K. K., and Jackson, S. P. (2001) DNA double-strand breaks: signaling, repair and the cancer connection, Nat Genet 27, 247-254.
    [3] Lindahl, T., and Barnes, D. E. (2000) Repair of endogenous DNA damage, Cold Spring Harbor symposia on quantitative biology 65, 127-133.
    [4] van Gent, D. C., Hoeijmakers, J. H., and Kanaar, R. (2001) Chromosomal stability and the DNA double-stranded break connection, Nature reviews. Genetics 2, 196-206.
    [5] Rouse, J., and Jackson, S. P. (2002) Interfaces between the detection, signaling, and repair of DNA damage, Science 297, 547-551.
    [6] Harrison, J. C., and Haber, J. E. (2006) Surviving the breakup: the DNA damage checkpoint, Annual review of genetics 40, 209-235.
    [7] Harper, J. W., and Elledge, S. J. (2007) The DNA damage response: ten years after, Mol Cell 28, 739-745.
    [8] Polo, S. E., and Jackson, S. P. (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications, Genes Dev 25, 409-433.
    [9] Nyberg, K. A., Michelson, R. J., Putnam, C. W., and Weinert, T. A. (2002) Toward maintaining the genome: DNA damage and replication checkpoints, Annu Rev Genet 36, 617-656.
    [10] Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K., and Linn, S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints, Annu Rev Biochem 73, 39-85.
    [11] Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., and Mazur, M. (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chemico-biological interactions 160, 1-40.
    [12] Kawanishi, S., Hiraku, Y., Pinlaor, S., and Ma, N. (2006) Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis, Biological chemistry 387, 365-372.
    [13] Kondo, N., Takahashi, A., Ono, K., and Ohnishi, T. (2010) DNA damage induced by alkylating agents and repair pathways, Journal of nucleic acids 2010, 543531.
    [14] Warwick, G. P. (1963) The Mechanism of Action of Alkylating Agents, Cancer research 23, 1315-1333.
    [15] Maizels, N. (2005) Immunoglobulin gene diversification, Annual review of genetics 39, 23-46.
    [16] Rechkunova, N. I., Krasikova, Y. S., and Lavrik, O. I. (2011) Nucleotide excision repair: DNA damage recognition and preincision complex assembly, Biochemistry. Biokhimiia 76, 24-35.
    [17] Wood, R. D., Araujo, S. J., Ariza, R. R., Batty, D. P., Biggerstaff, M., Evans, E., Gaillard, P. H., Gunz, D., Koberle, B., Kuraoka, I., Moggs, J. G., Sandall, J. K., and Shivji, M. K. (2000) DNA damage recognition and nucleotide excision repair in mammalian cells, Cold Spring Harbor symposia on quantitative biology 65, 173-182.
    [18] Nakamura, A. J., Rao, V. A., Pommier, Y., and Bonner, W. M. (2010) The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks, Cell cycle 9, 389-397.
    [19] Bonner, W. M., Redon, C. E., Dickey, J. S., Nakamura, A. J., Sedelnikova, O. A., Solier, S., and Pommier, Y. (2008) GammaH2AX and cancer, Nature reviews. Cancer 8, 957-967.
    [20] Sedelnikova, O. A., and Bonner, W. M. (2006) GammaH2AX in cancer cells: a potential biomarker for cancer diagnostics, prediction and recurrence, Cell cycle 5, 2909-2913.
    [21] Dickey, J. S., Redon, C. E., Nakamura, A. J., Baird, B. J., Sedelnikova, O. A., and Bonner, W. M. (2009) H2AX: functional roles and potential applications, Chromosoma 118, 683-692.
    [22] Fernandez-Capetillo, O., Lee, A., Nussenzweig, M., and Nussenzweig, A. (2004) H2AX: the histone guardian of the genome, DNA repair 3, 959-967.
    [23] Stiff, T., O'Driscoll, M., Rief, N., Iwabuchi, K., Lobrich, M., and Jeggo, P. A. (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation, Cancer research 64, 2390-2396.
    [24] Stiff, T., Walker, S. A., Cerosaletti, K., Goodarzi, A. A., Petermann, E., Concannon, P., O'Driscoll, M., and Jeggo, P. A. (2006) ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling, The EMBO journal 25, 5775-5782.
    [25] Kulkarni, A., and Das, K. C. (2008) Differential roles of ATR and ATM in p53, Chk1, and histone H2AX phosphorylation in response to hyperoxia: ATR-dependent ATM activation, American journal of physiology. Lung cellular and molecular physiology 294, L998-L1006.
    [26] Stucki, M., and Jackson, S. P. (2004) MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes, DNA repair 3, 953-957.
    [27] Stucki, M., Clapperton, J. A., Mohammad, D., Yaffe, M. B., Smerdon, S. J., and Jackson, S. P. (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks, Cell 123, 1213-1226.
    [28] Lee, A. C., Fernandez-Capetillo, O., Pisupati, V., Jackson, S. P., and Nussenzweig, A. (2005) Specific association of mouse MDC1/NFBD1 with NBS1 at sites of DNA-damage, Cell Cycle 4, 177-182.
    [29] Chapman, J. R., and Jackson, S. P. (2008) Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage, EMBO Rep 9, 795-801.
    [30] Spycher, C., Miller, E. S., Townsend, K., Pavic, L., Morrice, N. A., Janscak, P., Stewart, G. S., and Stucki, M. (2008) Constitutive phosphorylation of MDC1 physically links the MRE11-RAD50-NBS1 complex to damaged chromatin, J Cell Biol 181, 227-240.
    [31] Coster, G., and Goldberg, M. (2010) The cellular response to DNA damage: a focus on MDC1 and its interacting proteins, Nucleus 1, 166-178.
    [32] Jungmichel, S., and Stucki, M. (2010) MDC1: The art of keeping things in focus, Chromosoma 119, 337-349.
    [33] Shang, Y. L., Bodero, A. J., and Chen, P. L. (2003) NFBD1, a novel nuclear protein with signature motifs of FHA and BRCT, and an internal 41-amino acid repeat sequence, is an early participant in DNA damage response, J Biol Chem 278, 6323-6329.
    [34] Lukas, C., Falck, J., Bartkova, J., Bartek, J., and Lukas, J. (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage, Nat Cell Biol 5, 255-260.
    [35] Stewart, G. S., Wang, B., Bignell, C. R., Taylor, A. M., and Elledge, S. J. (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint, Nature 421, 961-966.
    [36] Lou, Z., Minter-Dykhouse, K., Franco, S., Gostissa, M., Rivera, M. A., Celeste, A., Manis, J. P., van Deursen, J., Nussenzweig, A., Paull, T. T., Alt, F. W., and Chen, J. (2006) MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals, Mol Cell 21, 187-200.
    [37] Rodriguez, M., Yu, X., Chen, J., and Songyang, Z. (2003) Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains, J Biol Chem 278, 52914-52918.
    [38] DiTullio, R. A., Jr., Mochan, T. A., Venere, M., Bartkova, J., Sehested, M., Bartek, J., and Halazonetis, T. D. (2002) 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer, Nat Cell Biol 4, 998-1002.
    [39] Bekker-Jensen, S., Lukas, C., Melander, F., Bartek, J., and Lukas, J. (2005) Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1, J Cell Biol 170, 201-211.
    [40] Panier, S., and Boulton, S. J. (2014) Double-strand break repair: 53BP1 comes into focus, Nat Rev Mol Cell Biol 15, 7-18.
    [41] Botuyan, M. V., Lee, J., Ward, I. M., Kim, J. E., Thompson, J. R., Chen, J., and Mer, G. (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair, Cell 127, 1361-1373.
    [42] Charier, G., Couprie, J., Alpha-Bazin, B., Meyer, V., Quemeneur, E., Guerois, R., Callebaut, I., Gilquin, B., and Zinn-Justin, S. (2004) The Tudor tandem of 53BP1: a new structural motif involved in DNA and RG-rich peptide binding, Structure 12, 1551-1562.
    [43] Eliezer, Y., Argaman, L., Rhie, A., Doherty, A. J., and Goldberg, M. (2009) The direct interaction between 53BP1 and MDC1 is required for the recruitment of 53BP1 to sites of damage, J Biol Chem 284, 426-435.
    [44] Geley, S., Kramer, E., Gieffers, C., Gannon, J., Peters, J. M., and Hunt, T. (2001) Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint, J Cell Biol 153, 137-148.
    [45] Castro, A., Bernis, C., Vigneron, S., Labbe, J. C., and Lorca, T. (2005) The anaphase-promoting complex: a key factor in the regulation of cell cycle, Oncogene 24, 314-325.
    [46] Pepperkok, R., and Ellenberg, J. (2006) High-throughput fluorescence microscopy for systems biology, Nat Rev Mol Cell Biol 7, 690-696.
    [47] Coster, G., Hayouka, Z., Argaman, L., Strauss, C., Friedler, A., Brandeis, M., and Goldberg, M. (2007) The DNA damage response mediator MDC1 directly interacts with the anaphase-promoting complex/cyclosome, J Biol Chem 282, 32053-32064.
    [48] Luo, K., Yuan, J., Chen, J., and Lou, Z. (2009) Topoisomerase IIalpha controls the decatenation checkpoint, Nat Cell Biol 11, 204-210.
    [49] Dronamraju, R., and Mason, J. M. (2009) Recognition of double strand breaks by a mutator protein (MU2) in Drosophila melanogaster, PLoS Genet 5, e1000473.
    [50] Lou, Z., Chen, B. P., Asaithamby, A., Minter-Dykhouse, K., Chen, D. J., and Chen, J. (2004) MDC1 regulates DNA-PK autophosphorylation in response to DNA damage, J Biol Chem 279, 46359-46362.
    [51] Gottlieb, T. M., and Jackson, S. P. (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen, Cell 72, 131-142.
    [52] Xie, A., Hartlerode, A., Stucki, M., Odate, S., Puget, N., Kwok, A., Nagaraju, G., Yan, C., Alt, F. W., Chen, J., Jackson, S. P., and Scully, R. (2007) Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair, Mol Cell 28, 1045-1057.
    [53] Kolas, N. K., Chapman, J. R., Nakada, S., Ylanko, J., Chahwan, R., Sweeney, F. D., Panier, S., Mendez, M., Wildenhain, J., Thomson, T. M., Pelletier, L., Jackson, S. P., and Durocher, D. (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase, Science 318, 1637-1640.
    [54] Mailand, N., Bekker-Jensen, S., Faustrup, H., Melander, F., Bartek, J., Lukas, C., and Lukas, J. (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins, Cell 131, 887-900.
    [55] Matsuoka, S., Ballif, B. A., Smogorzewska, A., McDonald, E. R., 3rd, Hurov, K. E., Luo, J., Bakalarski, C. E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S. P., and Elledge, S. J. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage, Science 316, 1160-1166.
    [56] Huen, M. S., Grant, R., Manke, I., Minn, K., Yu, X., Yaffe, M. B., and Chen, J. (2007) RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly, Cell 131, 901-914.
    [57] Panier, S., and Durocher, D. (2009) Regulatory ubiquitylation in response to DNA double-strand breaks, DNA Repair (Amst) 8, 436-443.
    [58] van Attikum, H., and Gasser, S. M. (2009) Crosstalk between histone modifications during the DNA damage response, Trends Cell Biol 19, 207-217.
    [59] Huyen, Y., Zgheib, O., Ditullio, R. A., Jr., Gorgoulis, V. G., Zacharatos, P., Petty, T. J., Sheston, E. A., Mellert, H. S., Stavridi, E. S., and Halazonetis, T. D. (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks, Nature 432, 406-411.
    [60] Doil, C., Mailand, N., Bekker-Jensen, S., Menard, P., Larsen, D. H., Pepperkok, R., Ellenberg, J., Panier, S., Durocher, D., Bartek, J., Lukas, J., and Lukas, C. (2009) RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins, Cell 136, 435-446.
    [61] Stewart, G. S. (2009) Solving the RIDDLE of 53BP1 recruitment to sites of damage, Cell Cycle 8, 1532-1538.
    [62] Melander, F., Bekker-Jensen, S., Falck, J., Bartek, J., Mailand, N., and Lukas, J. (2008) Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin, J Cell Biol 181, 213-226.
    [63] Wu, L., Luo, K., Lou, Z., and Chen, J. (2008) MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks, Proc Natl Acad Sci U S A 105, 11200-11205.
    [64] Lloyd, J., Chapman, J. R., Clapperton, J. A., Haire, L. F., Hartsuiker, E., Li, J., Carr, A. M., Jackson, S. P., and Smerdon, S. J. (2009) A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage, Cell 139, 100-111.
    [65] Williams, R. S., Dodson, G. E., Limbo, O., Yamada, Y., Williams, J. S., Guenther, G., Classen, S., Glover, J. N., Iwasaki, H., Russell, P., and Tainer, J. A. (2009) Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair, Cell 139, 87-99.
    [66] Lou, Z., Minter-Dykhouse, K., Wu, X., and Chen, J. (2003) MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways, Nature 421, 957-961.
    [67] Zhang, J., Ma, Z., Treszezamsky, A., and Powell, S. N. (2005) MDC1 interacts with Rad51 and facilitates homologous recombination, Nat Struct Mol Biol 12, 902-909.
    [68] So, S. R., Davis, A. J., and Chen, D. J. (2009) Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites, Journal of Cell Biology 187, 977-990.
    [69] Matsuoka, S., Rotman, G., Ogawa, A., Shiloh, Y., Tamai, K., and Elledge, S. J. (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro, Proc Natl Acad Sci U S A 97, 10389-10394.
    [70] Durocher, D., Taylor, I. A., Sarbassova, D., Haire, L. F., Westcott, S. L., Jackson, S. P., Smerdon, S. J., and Yaffe, M. B. (2000) The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms, Molecular cell 6, 1169-1182.
    [71] Li, J., Taylor, I. A., Lloyd, J., Clapperton, J. A., Howell, S., MacMillan, D., and Smerdon, S. J. (2008) Chk2 oligomerization studied by phosphopeptide ligation: implications for regulation and phosphodependent interactions, J Biol Chem 283, 36019-36030.
    [72] Ahn, J., and Prives, C. (2002) Checkpoint kinase 2 (Chk2) monomers or dimers phosphorylate Cdc25C after DNA damage regardless of threonine 68 phosphorylation, J Biol Chem 277, 48418-48426.
    [73] Durocher, D., and Jackson, S. P. (2002) The FHA domain, FEBS Lett 513, 58-66.
    [74] Goldberg, M., Stucki, M., Falck, J., D'Amours, D., Rahman, D., Pappin, D., Bartek, J., and Jackson, S. P. (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint, Nature 421, 952-956.
    [75] Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode, Method Enzymol 276, 307-326.
    [76] McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software, J Appl Crystallogr 40, 658-674.
    [77] Cowtan, K. D., and Zhang, K. Y. (1999) Density modification for macromolecular phase improvement, Progress in biophysics and molecular biology 72, 245-270.
    [78] Perrakis, A., Morris, R., and Lamzin, V. S. (1999) Automated protein model building combined with iterative structure refinement, Nature structural biology 6, 458-463.
    [79] Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models, Acta Crystallogr A 47 ( Pt 2), 110-119.
    [80] Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics, Acta crystallographica. Section D, Biological crystallography 60, 2126-2132.
    [81] Murshudov, G. N., Skubak, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F., and Vagin, A. A. (2011) REFMAC5 for the refinement of macromolecular crystal structures, Acta Crystallogr D Biol Crystallogr 67, 355-367.
    [82] Vagin, A., and Teplyakov, A. (1997) MOLREP: an automated program for molecular replacement, Journal of applied crystallography 30, 1022-1025.
    [83] Vagin, A., and Teplyakov, A. (2010) Molecular replacement with MOLREP, Acta Crystallogr D Biol Crystallogr 66, 22-25.
    [84] Stavridi, E. S., Huyen, Y., Loreto, I. R., Scolnick, D. M., Halazonetis, T. D., Pavletich, N. P., and Jeffrey, P. D. (2002) Crystal structure of the FHA domain of the Chfr mitotic checkpoint protein and its complex with tungstate, Structure 10, 891-899.
    [85] Luo, K., Yuan, J., and Lou, Z. (2011) Oligomerization of MDC1 protein is important for proper DNA damage response, The Journal of biological chemistry 286, 28192-28199.
    [86] Mahajan, A., Yuan, C., Lee, H., Chen, E. S., Wu, P. Y., and Tsai, M. D. (2008) Structure and function of the phosphothreonine-specific FHA domain, Science signaling 1, re12.
    [87] Liang, X., and Van Doren, S. R. (2008) Mechanistic insights into phosphoprotein-binding FHA domains, Acc Chem Res 41, 991-999.
    [88] Li, J., Williams, B. L., Haire, L. F., Goldberg, M., Wilker, E., Durocher, D., Yaffe, M. B., Jackson, S. P., and Smerdon, S. J. (2002) Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2, Molecular cell 9, 1045-1054.
    [89] Yongkiettrakul, S., Byeon, I. J., and Tsai, M. D. (2004) The ligand specificity of yeast Rad53 FHA domains at the +3 position is determined by nonconserved residues, Biochemistry 43, 3862-3869.
    [90] So, S., Davis, A. J., and Chen, D. J. (2009) Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites, J Cell Biol 187, 977-990.
    [91] Pennell, S., Westcott, S., Ortiz-Lombardia, M., Patel, D., Li, J., Nott, T. J., Mohammed, D., Buxton, R. S., Yaffe, M. B., Verma, C., and Smerdon, S. J. (2010) Structural and functional analysis of phosphothreonine-dependent FHA domain interactions, Structure 18, 1587-1595.
    [92] Li, J., Williams, B. L., Haire, L. F., Goldberg, M., Wilker, E., Durocher, D., Yaffe, M. B., Jackson, S. P., and Smerdon, S. J. (2002) Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2, Mol Cell 9, 1045-1054.
    [93] Jungmichel, S., Clapperton, J. A., Lloyd, J., Hari, F. J., Spycher, C., Pavic, L., Li, J., Haire, L. F., Bonalli, M., Larsen, D. H., Lukas, C., Lukas, J., Macmillan, D., Nielsen, M. L., Stucki, M., and Smerdon, S. J. (2012) The molecular basis of ATM-dependent dimerization of the Mdc1 DNA damage checkpoint mediator, Nucleic Acids Res.
    [94] Liu, J., Luo, S., Zhao, H., Liao, J., Li, J., Yang, C., Xu, B., Stern, D. F., Xu, X., and Ye, K. (2012) Structural mechanism of the phosphorylation-dependent dimerization of the MDC1 forkhead-associated domain, Nucleic Acids Res.
    [95] Wu, H. H., Wu, P. Y., Huang, K. F., Kao, Y. Y., and Tsai, M. D. (2012) Structural delineation of MDC1-FHA domain binding with CHK2-pThr68, Biochemistry 51, 575-577.
    [96] Lee, H., Yuan, C., Hammet, A., Mahajan, A., Chen, E. S., Wu, M. R., Su, M. I., Heierhorst, J., and Tsai, M. D. (2008) Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade, Molecular cell 30, 767-778.
    [97] Byeon, I. J., Li, H., Song, H., Gronenborn, A. M., and Tsai, M. D. (2005) Sequential phosphorylation and multisite interactions characterize specific target recognition by the FHA domain of Ki67, Nat Struct Mol Biol 12, 987-993.
    [98] Laue, T. M., and Stafford, W. F., 3rd. (1999) Modern applications of analytical ultracentrifugation, Annual review of biophysics and biomolecular structure 28, 75-100.
    [99] Schuck, P. (2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation, Anal Biochem 320, 104-124.
    [100] Schuck, P., Perugini, M. A., Gonzales, N. R., Howlett, G. J., and Schubert, D. (2002) Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems, Biophys J 82, 1096-1111.
    [101] Galanty, Y., Belotserkovskaya, R., Coates, J., Polo, S., Miller, K. M., and Jackson, S. P. (2009) Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks, Nature 462, 935-939.
    [102] Limoli, C. L., and Ward, J. F. (1993) A new method for introducing double-strand breaks into cellular DNA, Radiation research 134, 160-169.
    [103] Splinter, J., Jakob, B., Lang, M., Yano, K., Engelhardt, J., Hell, S. W., Chen, D. J., Durante, M., and Taucher-Scholz, G. (2010) Biological dose estimation of UVA laser microirradiation utilizing charged particle-induced protein foci, Mutagenesis 25, 289-297.
    [104] Liu, Y., and Kuhlman, B. (2006) RosettaDesign server for protein design, Nucleic Acids Res 34, W235-238.
    [105] Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0, Bioinformatics 23, 2947-2948.
    [106] Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., and Thompson, J. D. (2003) Multiple sequence alignment with the Clustal series of programs, Nucleic Acids Res 31, 3497-3500.
    [107] Sarkar, M., and Magliery, T. J. (2008) Re-engineering a split-GFP reassembly screen to examine RING-domain interactions between BARD1 and BRCA1 mutants observed in cancer patients, Molecular bioSystems 4, 599-605.
    [108] Lukas, C., Bartek, J., and Lukas, J. (2005) Imaging of protein movement induced by chromosomal breakage: tiny 'local' lesions pose great 'global' challenges, Chromosoma 114, 146-154.
    [109] Uematsu, N., Weterings, E., Yano, K., Morotomi-Yano, K., Jakob, B., Taucher-Scholz, G., Mari, P. O., van Gent, D. C., Chen, B. P., and Chen, D. J. (2007) Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks, J Cell Biol 177, 219-229.
    [110] Yano, K., Morotomi-Yano, K., Wang, S. Y., Uematsu, N., Lee, K. J., Asaithamby, A., Weterings, E., and Chen, D. J. (2008) Ku recruits XLF to DNA double-strand breaks, EMBO reports 9, 91-96.
    [111] Watters, D., Khanna, K. K., Beamish, H., Birrell, G., Spring, K., Kedar, P., Gatei, M., Stenzel, D., Hobson, K., Kozlov, S., Zhang, N., Farrell, A., Ramsay, J., Gatti, R., and Lavin, M. (1997) Cellular localisation of the ataxia-telangiectasia (ATM) gene product and discrimination between mutated and normal forms, Oncogene 14, 1911-1921.
    [112] Young, D. B., Jonnalagadda, J., Gatei, M., Jans, D. A., Meyn, S., and Khanna, K. K. (2005) Identification of domains of ataxia-telangiectasia mutated required for nuclear localization and chromatin association, The Journal of biological chemistry 280, 27587-27594.
    [113] Yin, Y., Seifert, A., Chua, J. S., Maure, J. F., Golebiowski, F., and Hay, R. T. (2012) SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage, Genes Dev 26, 1196-1208.
    [114] Galanty, Y., Belotserkovskaya, R., Coates, J., and Jackson, S. P. (2012) RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair, Genes Dev 26, 1179-1195.
    [115] Luo, K., Zhang, H., Wang, L., Yuan, J., and Lou, Z. (2012) Sumoylation of MDC1 is important for proper DNA damage response, The EMBO journal 31, 3008-3019.
    [116] Shi, W., Ma, Z., Willers, H., Akhtar, K., Scott, S. P., Zhang, J., Powell, S., and Zhang, J. (2008) Disassembly of MDC1 foci is controlled by ubiquitin-proteasome-dependent degradation, The Journal of biological chemistry 283, 31608-31616.
    [117] Vyas, R., Kumar, R., Clermont, F., Helfricht, A., Kalev, P., Sotiropoulou, P., Hendriks, I. A., Radaelli, E., Hochepied, T., Blanpain, C., Sablina, A., van Attikum, H., Olsen, J. V., Jochemsen, A. G., Vertegaal, A. C., and Marine, J. C. (2013) RNF4 is required for DNA double-strand break repair in vivo, Cell Death Differ 20, 490-502.
    [118] Perry, J. J., Tainer, J. A., and Boddy, M. N. (2008) A SIM-ultaneous role for SUMO and ubiquitin, Trends Biochem Sci 33, 201-208.
    [119] Zhang, D., Zaugg, K., Mak, T. W., and Elledge, S. J. (2006) A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response, Cell 126, 529-542.
    [120] Ahn, J. Y., Schwarz, J. K., Piwnica-Worms, H., and Canman, C. E. (2000) Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation, Cancer Res 60, 5934-5936.
    [121] Bartek, J., and Lukas, J. (2003) Chk1 and Chk2 kinases in checkpoint control and cancer, Cancer Cell 3, 421-429.
    [122] Stracker, T. H., Usui, T., and Petrini, J. H. (2009) Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response, DNA Repair (Amst) 8, 1047-1054.
    [123] Stolz, A., Ertych, N., and Bastians, H. (2011) Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability, Clin Cancer Res 17, 401-405.
    [124] Stolz, A., Ertych, N., Kienitz, A., Vogel, C., Schneider, V., Fritz, B., Jacob, R., Dittmar, G., Weichert, W., Petersen, I., and Bastians, H. (2010) The CHK2-BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells, Nat Cell Biol 12, 492-499.
    [125] Sato, K., Ohta, T., and Venkitaraman, A. R. (2010) A mitotic role for the DNA damage-responsive CHK2 kinase, Nat Cell Biol 12, 424-425.
    [126] Bell, D. W., Varley, J. M., Szydlo, T. E., Kang, D. H., Wahrer, D. C., Shannon, K. E., Lubratovich, M., Verselis, S. J., Isselbacher, K. J., Fraumeni, J. F., Birch, J. M., Li, F. P., Garber, J. E., and Haber, D. A. (1999) Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome, Science 286, 2528-2531.
    [127] Lee, S. B., Kim, S. H., Bell, D. W., Wahrer, D. C., Schiripo, T. A., Jorczak, M. M., Sgroi, D. C., Garber, J. E., Li, F. P., Nichols, K. E., Varley, J. M., Godwin, A. K., Shannon, K. M., Harlow, E., and Haber, D. A. (2001) Destabilization of CHK2 by a missense mutation associated with Li-Fraumeni Syndrome, Cancer Res 61, 8062-8067.
    [128] Falck, J., Lukas, C., Protopopova, M., Lukas, J., Selivanova, G., and Bartek, J. (2001) Functional impact of concomitant versus alternative defects in the Chk2-p53 tumour suppressor pathway, Oncogene 20, 5503-5510.
    [129] Oliver, A. W., Paul, A., Boxall, K. J., Barrie, S. E., Aherne, G. W., Garrett, M. D., Mittnacht, S., and Pearl, L. H. (2006) Trans-activation of the DNA-damage signalling protein kinase Chk2 by T-loop exchange, EMBO J 25, 3179-3190.
    [130] Xu, X., Tsvetkov, L. M., and Stern, D. F. (2002) Chk2 activation and phosphorylation-dependent oligomerization, Mol Cell Biol 22, 4419-4432.
    [131] Ahn, J. Y., Li, X., Davis, H. L., and Canman, C. E. (2002) Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of the Chk2 protein kinase via the forkhead-associated domain, J Biol Chem 277, 19389-19395.
    [132] Cai, Z., Chehab, N. H., and Pavletich, N. P. (2009) Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase, Mol Cell 35, 818-829.
    [133] Brown, P. H., and Schuck, P. (2006) Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation, Biophysical journal 90, 4651-4661.
    [134] Smolsky, I. L., Liu, P., Niebuhr, M., Ito, K., Weiss, T. M., and Tsuruta, H. (2007) Biological small-angle X-ray scattering facility at the Stanford Synchrotron Radiation Laboratory, Journal of Applied Crystallography %@ 0021-8898 40, s453-s458.
    [135] Huang, T. C., Toraya, H., Blanton, T. N., and Wu, Y. (1993) X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard, Journal of Applied Crystallography %@ 0021-8898 26, 180-184.
    [136] West, A. L., Evans, S. E., Gonzalez, J. M., Carter, L. G., Tsuruta, H., Pozharski, E., and Michel, S. L. (2012) Ni(II) coordination to mixed sites modulates DNA binding of HpNikR via a long-range effect, Proc Natl Acad Sci U S A 109, 5633-5638.
    [137] McPhillips, T. M., McPhillips, S. E., Chiu, H. J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M., and Kuhn, P. (2002) Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines, Journal of synchrotron radiation 9, 401-406.
    [138] Martel, A., Liu, P., Weiss, T. M., Niebuhr, M., and Tsuruta, H. (2012) An integrated high-throughput data acquisition system for biological solution X-ray scattering studies, Journal of synchrotron radiation 19, 431-434.
    [139] Svergun, D., Barberato, C., and Koch, M. H. J. (1995) CRYSOL - a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates, Journal of Applied Crystallography %@ 0021-8898 28, 768-773.
    [140] Svergun, D. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria, Journal of Applied Crystallography %@ 0021-8898 25, 495-503.
    [141] Shrestha, A., Hamilton, G., O'Neill, E., Knapp, S., and Elkins, J. M. (2012) Analysis of conditions affecting auto-phosphorylation of human kinases during expression in bacteria, Protein Expr Purif 81, 136-143.
    [142] King, J. B., Gross, J., Lovly, C. M., Rohrs, H., Piwnica-Worms, H., and Townsend, R. R. (2006) Accurate mass-driven analysis for the characterization of protein phosphorylation. Study of the human Chk2 protein kinase, Anal Chem 78, 2171-2181.
    [143] Gabant, G., Lorphelin, A., Nozerand, N., Marchetti, C., Bellanger, L., Dedieu, A., Quemeneur, E., and Alpha-Bazin, B. (2008) Autophosphorylated residues involved in the regulation of human chk2 in vitro, J Mol Biol 380, 489-503.
    [144] Olsen, B. B., Larsen, M. R., Boldyreff, B., Niefind, K., and Issinger, O. G. (2008) Exploring the intramolecular phosphorylation sites in human Chk2, Mutat Res 646, 50-59.
    [145] Johnson, E. C., and Kent, S. B. (2006) Insights into the mechanism and catalysis of the native chemical ligation reaction, J Am Chem Soc 128, 6640-6646.
    [146] Melchionna, R., Chen, X. B., Blasina, A., and McGowan, C. H. (2000) Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1, Nat Cell Biol 2, 762-765.
    [147] Zhou, B. B., Chaturvedi, P., Spring, K., Scott, S. P., Johanson, R. A., Mishra, R., Mattern, M. R., Winkler, J. D., and Khanna, K. K. (2000) Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity, The Journal of biological chemistry 275, 10342-10348.
    [148] Ward, I. M., Wu, X., and Chen, J. (2001) Threonine 68 of Chk2 is phosphorylated at sites of DNA strand breaks, J Biol Chem 276, 47755-47758.
    [149] Chehab, N. H., Malikzay, A., Appel, M., and Halazonetis, T. D. (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53, Genes & development 14, 278-288.
    [150] Lee, C. H., and Chung, J. H. (2001) The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation, The Journal of biological chemistry 276, 30537-30541.
    [151] Yaffe, M. B., and Smerdon, S. J. (2004) The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function, Annual review of biophysics and biomolecular structure 33, 225-244.
    [152] Qin, D., Lee, H., Yuan, C., Ju, Y., and Tsai, M. D. (2003) Identification of potential binding sites for the FHA domain of human Chk2 by in vitro binding studies, Biochem Biophys Res Commun 311, 803-808.
    [153] Svergun, D., Barberato, C., and Koch, M. H. J. (1995) CRYSOL - A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates, Journal of applied crystallography 28, 768-773.
    [154] Hilton, S., Naud, S., Caldwell, J. J., Boxall, K., Burns, S., Anderson, V. E., Antoni, L., Allen, C. E., Pearl, L. H., Oliver, A. W., Wynne Aherne, G., Garrett, M. D., and Collins, I. (2010) Identification and characterisation of 2-aminopyridine inhibitors of checkpoint kinase 2, Bioorg Med Chem 18, 707-718.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE