簡易檢索 / 詳目顯示

研究生: 李昀安
Li, Yun-An
論文名稱: 大質量原恆雙星系統IRAS17216-3801周圍之雙星周盤
A Circumbinary Disk Around the High-mass Protobinary System IRAS17216-3801
指導教授: 陳惠茹
Chen, Huei-Ru Vivien
口試委員: 顏士韋
Yen, Hsi-Wei
呂聖元
Liu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 53
中文關鍵詞: 大質量恆星大質量恆星形成聯星系統星周盤原恆星周盤雙星周盤雙星系統
外文關鍵詞: High-mass stars, Massive stars, Multiple system, circumstellar disk, circumbinary disk, accretion disks, binaries
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大質量聯星系統可能形成自不同的機制,例如:盤面分裂、紊流分裂或其他情境,然而,一個系統真實的形成機制很難從為數不多的觀測資料中判斷出來。這邊我們從ALMA的資料庫中選定大質量原恆雙星系統IRAS17216-3801,發表波段位於350GHz的連續譜線和光譜。此資料無法解析雙星系統中由Kraus et al. 2017所發現的各個星體,位於東邊的團塊則是第一次被觀測到,其擁有的分子豐富度比主目標來的少。主目標的光譜主要由一氧化硫及二氧化硫所組成,另外也有甲醇、氰化氫、HCO+分子以及他們的類同位素分子,我們利用二氧化硫和甲醇計算了旋轉能階溫度約為25-178K。許多分子(特別是二氧化硫)都在主目標上呈現出旋轉結構,我們認為這些分子追蹤了圍繞在原恆雙星周圍的雙星周盤,我們利用多組不同能量躍遷的二氧化硫與克卜勒薄盤面模型進行資料擬合來限制雙星周盤的幾何與動態性質,得到盤面傾角37.8◦、盤內徑370-560 au、盤外徑750-1360 au以及位於參考半徑(0."1∼308 au)的盤面旋轉速度8.6 km/s。由此我們計算出系統的動態質量為25.8太陽質量,此數值小於先前Kraus et al. 2017所提出的38太陽質量。新的雙星周盤約束條件及未來雙星系統各個星體的觀測資料將給予我們機會探測IRAS17216-3801可能的形成機制。


    High-mass multiple systems might form from different mechanisms such as disk fragmentation,turbulent fragmentation, or alternative scenarios. However, it is hard to tell the actual formationmechanism for a system with only few observational constraints. Here, we present the continuum andthe spectral emission of a high-mass protobinary system IRAS17216-3801 from ALMA archival dataat 350 GHz. The observation is unable to resolve each component discovered by Kraus et al. (2017).The east clump is first detected with fewer molecular lines than the main source. The spectrumof the main source is dominated by SO, SO2, and their isotopologues. CH3OH, HCN, HCO+, andtheir isotopologues are also detected from the main source. We calculate the rotation temperaturesof 22-298 K from SO2and CH3OH. We constrain the geometric and kinematic properties of thecircumbinary disk by fitting with a thin-disk Keplerian model from several SO2transitions. Theoptimized model gives the inclination angle (39.6◦), the inner (243 au) and outer radius (1232 au),and the rotation velocity of the disk (9.3 km/s at a reference radius of 0.1"∼308 au). The dynamicalmass of 30.3Mis calculated assuming Keplerian rotation, which is less than the previous study of 38M(Kraus et al. (2017)). The new constraints of the circumbinary disk with the future observationsof each component might allow us to probe the formation mechanism of IRAS17216-3801.

    Abstract List of Figures List of Tables 1 Introduction--------------------------------------------1 1.1 Massive Star Formation-------------------------------1 1.2 The Formation of High-mass Multiple System-----------2 1.3 IRAS17216-3801---------------------------------------3 1.4 Astrophysical Radiative Processes--------------------3 1.4.1 Radiative Transfer Equation and Planck Function----3 1.5 Telescope Measurements-------------------------------4 2 Observations-------------------------------------------4 2.1 ALMA Observations------------------------------------4 2.2 Imaging----------------------------------------------5 3 Results------------------------------------------------6 3.1 Continuum Emission-----------------------------------6 3.2 Molecular Emission-----------------------------------8 3.2.1 Line Identification--------------------------------8 3.2.2 Channel Maps, Moment Maps and PV Diagrams----------9 4 Analysis-----------------------------------------------23 4.1 Rotation Diagrams------------------------------------23 4.2 The Thin Disk Model for the SO2 Emission-------------33 5 Discussion---------------------------------------------43 5.1 Dynamical Mass---------------------------------------43 5.2 Chemical Composition of the Circumbinary Disk around IRAS17216-3801------------------------------------------------------44 5.2.1 Isotope Ratio--------------------------------------44 5.2.2 The Origin of the Sulfurated Molecules-------------44 5.3 SiO outflows from IRAS17216-3801 B?------------------45 6 Conclusions--------------------------------------------47 A Appendix: Best-fit parameters with the different power-law index of intensity-------------------------------------------------48

    Ahmadi, A., Kuiper, R., and Beuther, H. (2019). Disc kinematics and stability in high-mass starformation. linking simulations and observations.Astronomy Astrophysics, 632:A50.
    Anders, E. and Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar.Geochimicaet Cosmochimica Acta, 53:197.
    Argon, A. L., Reid, M. J., and Menten, K. M. (2000). Interstellar hydroxyl masers in the galaxy. i.the vla survey.The Astrophysical Journal Supplement Series, 129:159.
    Artymowicz, P. and Lubow, S. H. (1994). Dynamics of binary-disk interaction. i. resonances anddisk gap sizes.Astrophysical Journal, 421:651.
    Bally, J. and Zinnecker, H. (2005). The birth of high-mass stars: Accretion and/or mergers?TheAstronomical Journal, 129:2281.
    Bate, M. R. and Bonnell, I. A. (1997). Accretion during binary star formation - ii. gaseous accretionand disc formation.Monthly Notices of the Royal Astronomical Society, 285:33.
    Beuther, H., Linz, H., Henning, T., Feng, S., and Teague, R. (2017). Multiplicity and disks within thehigh-mass core ngc 7538irs1. resolving cm line and continuum emission at 0.06×0.05 resolution.Astronomy Astrophysics, 605:A61.
    Boley, P. A., Linz, H., van Boekel, R., Henning, T., Feldt, M., Kaper, L., Leinert, C., Müller, A.,Pascucci, I., Robberto, M., Stecklum, B., Waters, L. B. F. M., and Zinnecker, H. (2013). Thevlti/midi survey of massive young stellar objects sounding the inner regions around intermediate-and high-mass young stars using mid-infrared interferometry.Astronomy Astrophysics, 558:A24.
    Briggs, D. S. (1995). High fidelity interferometric imaging: Robust weighting and nnls deconvolu-tion.American Astronomical Society, 187th AAS Meeting; Bulletin of the American AstronomicalSociety, 27:1444.
    Caswell, J. L. (1998). Positions of hydroxyl masers at 1665 and 1667 mhz.Monthly Notices of theRoyal Astronomical Society, 297:215.
    Charnley, S. B. (1997). Sulfuretted molecules in hot cores.The Astrophysical Journal, 481:396.
    Chen, H.-R. V., Keto, E., Zhang, Q., Sridharan, T. K., Liu, S.-Y., and Su, Y.-N. (2016). A hotand massive accretion disk around the high-mass protostar iras 20126+4104.The AstrophysicalJournal, 823:125.
    Chini, R., Hoffmeister, V. H., Nasseri, A., Stahl, O., and Zinnecker, H. (2012). A spectroscopicsurvey on the multiplicity of high-mass stars.Monthly Notices of the Royal Astronomical Society,424:1925.
    Cohen, R. J., Baart, E. E., and Jonas, J. L. (1988). Oh masers associated with iras far-infraredsources.Monthly Notices of the Royal Astronomical Society, 231:205.
    Cummins, S. E., Linke, R. A., and Thaddeus, P. (1986). A survey of the millimeter-wave spectrumof sagittarius b2.Astrophysical Journal Supplement, 60:819.
    Dale, J. E. and Davies, M. B. (2006). Collisions and close encounters involving massive main-sequencestars.Monthly Notices of the Royal Astronomical Society, 366:1424.
    Duchêne, G. and Kraus, A. (2013). Stellar multiplicity.Annual Review of Astronomy and Astro-physics, 51:269.
    Fisher, R. T. (2004). A turbulent interstellar medium origin of the binary period distribution.TheAstrophysical Journal, 600:769.
    Frost, A. J., Oudmaijer, R. D., de Wit, W. J., and Lumsden, S. L. (2021). Unveiling the traits ofmassive young stellar objects through a multi-scale survey.Astronomy Astrophysics, 648:A62.
    Girart, J. M., Estalella, R., Fernández-López, M., Curiel, S., Frau, P., Galvan-Madrid, R., Rao, R.,Busquet, G., and Juárez, C. (2017). The circumestellar disk of the b0 protostar powering the hh80-81 radio jet.The Astrophysical Journal, 847:58.
    Ilee, J. D., Cyganowski, C. J., Brogan, C. L., Hunter, T. R., Forgan, D. H., Haworth, T. J., Clarke,C. J., and Harries, T. J. (2018). G11.92-0.61 mm 1: A fragmented keplerian disk surrounding aproto-o star.The Astrophysical Journal Letters, 869:L24.
    Ilee, J. D., Cyganowski, C. J., Nazari, P., Hunter, T. R., Brogan, C. L., Forgan, D. H., and Zhang,Q. (2016). G11.92-0.61 mm1: a keplerian disc around a massive young proto-o star.MonthlyNotices of the Royal Astronomical Society, 462:4386.
    Johnston, K. G., Hoare, M. G., Beuther, H., Kuiper, R., Kee, N. D., Linz, H., Boley, P., Maud,L. T., Ahmadi, A., and Robitaille, T. P. (2020). Spiral arms and instability within the afgl 4176mm1 disc.Astronomy Astrophysics, 634:L11.
    Kennedy, G. M., Matrà, L., Facchini, S., Milli, J., Panić, O., Price, D., Wilner, D. J., Wyatt, M. C.,and Yelverton, B. M. (2019). A circumbinary protoplanetary disk in a polar configuration.NatureAstronomy, 3:230.
    Klassen, M., Pudritz, R. E., Kuiper, R., Peters, T., and Banerjee, R. (2016). Simulating the formationof massive protostars. i. radiative feedback and accretion disks.The Astrophysical Journal, 823:28.
    Kratter, K. and Lodato, G. (2016). Gravitational instabilities in circumstellar disks.Annual Reviewof Astronomy and Astrophysics, 54:271.
    Kratter, K. M. and Matzner, C. D. (2006). Fragmentation of massive protostellar discs.MonthlyNotices of the Royal Astronomical Society, 373:1563.
    Kraus, S., Kluska, J., Kreplin, A., Bate, M., Harries, T. J., Hofmann, K.-H., Hone, E., Monnier,J. D., Weigelt, G., Anugu, A., de Wit, W. J., and Wittkowski, M. (2017). A high-mass proto-binary system with spatially resolved circumstellar accretion disks and circumbinary disk.TheAstrophysical Journal Letters, 835:L5.
    Kuffmeier, M., Calcutt, H., and Kristensen, L. E. (2019). The bridge: a transient phenomenon offorming stellar multiples. sequential formation of stellar companions in filaments around youngprotostars.Astronomy Astrophysics, 628:A112.
    Kuiper, R. and Hosokawa, T. (2018). First hydrodynamics simulations of radiation forces andphotoionization feedback in massive star formation.Astronomy Astrophysics, 616:A101.
    Mangum, J. G. and Shirley, Y. L. (2015). How to calculate molecular column density.Publicationsof the Astronomical Society of the Pacific, 127:266.
    Maud, L. T., Cesaroni, R., Kumar, M. S. N., Rivilla, V. M., .Ginsburg, A., Klaassen, P. D., Harsono,D., Sánchez-Monge, , Ahmadi, A., Allen, V., Beltrán, M. T., Beuther, H., Galván-Madrid, R.,Goddi, C., Hoare, M. G., Hogerheijde, M. R., Johnston, K. G., Kuiper, R., Moscadelli, L., Peters,T., Testi, L., van der Tak, F. F. S., and de Wit, W. J. (2019). Substructures in the keplerian discaround the o-type (proto-)star g17.64+0.16.Astronomy Astrophysics, 627:L6.
    McMullin, J. P., Waters, B., Schiebel, D., Young, W., and Golap, K. (2007). Casa architectureand applications.Astronomical Data Analysis Software and Systems XVI ASP Conference Series,376:127–130.
    Oliva, G. A. and Kuiper, R. (2020). Modeling disk fragmentation and multiplicity in massive starformation.Astronomy Astrophysics, 644:A41.
    Persson, S. E. and Campbell, B. (1987). Identification of new young stellar objects associated withiras point sources. i. the southern galactic plane.Astronomical Journal, 94:416.
    Podio, L., Codella, C., Gueth, F., Cabrit, S., Bachiller, R., Gusdorf, A., Lee, C. F., Lefloch, B.,Leurini, S., Nisini, B., and Tafalla, M. (2015). The jet and the disk of the hh 212 low-massprotostar imaged by alma: So and so2 emission.Astronomy Astrophysics, 581:A85.
    Pomohaci, Robert ; Oudmaijer, R. D. . G. S. P. (2019). A pilot survey of the binarity of massiveyoung stellar objects with k-band adaptive optics.Monthly Notices of the Royal AstronomicalSociety, 484:226.
    Sakai, N., Oya, Y., Higuchi, A. E., Aikawa, Y., Hanawa, T., Ceccarelli, C., Lefloch, B., López-Sepulcre, A., Watanabe, Y., Sakai, T., Hirota, T., Caux, E., Vastel, C., Kahane, C., and Ya-mamoto, S. (2017). Vertical structure of the transition zone from infalling rotating envelope todisc in the class 0 protostar, iras 04368+2557.Monthly Notices of the Royal Astronomical Society,467:76.
    Sakai, N., Sakai, T., Hirota, T., Watanabe, Y., Ceccarelli, C., Kahane, C., Bottinelli, S., Caux, E.,Demyk, K., Vastel, C., Coutens, A., Taquet, V., Ohashi, N., Takakuwa, S., Yen, H.-W., Aikawa,Y., and Yamamoto, S. (2014). Change in the chemical composition of infalling gas forming a diskaround a protostar.Nature, 507:78.
    Shimonishi, T., Onaka, T., Kawamura, A., and Aikawa, Y. (2016). The detection of a hot molecularcore in the large magellanic cloud with alma.The Astrophysical Journal, 827:72.
    Sánchez-Monge, , Beltrán, M. T., Cesaroni, R., Etoka, S., Galli, D., Kumar, M. S. N., Moscadelli,L., Stanke, T., van der Tak, F. F. S., Vig, S., Walmsley, C. M., Wang, K. S., Zinnecker, H., Elia,D., Molinari, S., and Schisano, E. (2014). A necklace of dense cores in the high-mass star formingregion g35.20-0.74 n: Alma observations.Astronomy Astrophysics, 569:A11.
    Tabone, B., Cabrit, S., Bianchi, E., Ferreira, J., Pineau des Forêts, G., Codella, C., Gusdorf, A.,Gueth, F., Podio, L., and Chapillon, E. (2017). Alma discovery of a rotating so/so2 flow in hh212.a possible mhd disk wind?Astronomy Astrophysics, 607:L6.
    Takakuwa, S., Saigo, K., Matsumoto, T., Saito, M., Lim, J., Hanawa, T., Yen, H.-W., and Ho, P.T. P. (2017). Spiral arms, infall, and misalignment of the circumbinary disk from the circumstellardisks in the protostellar binary system l1551 ne.The Astrophysical Journal, 837:86.
    Tanaka, K. E. I., Tan, J. C., and Zhang, Y. (2017). The impact of feedback during massive starformation by core accretion.The Astrophysical Journal, 835:32.
    Tanaka, K. E. I., Zhang, Y., Hirota, T., Sakai, N., Motogi, K., Tomida, K., Tan, J. C., Rosero,V., Higuchi, A. E., Ohashi, S., Liu, M., and Sugiyama, K. (2020). Salt, hot water, and siliconcompounds tracing massive twin disks.The Astrophysical Journal Letters, 900:L2.
    Taniguchi, K., Guzmán, A. E., Majumdar, L., Saito, M., and Tokuda, K. (2020). Chemical compo-sition in the iras 16562-3959 high-mass star-forming region.The Astrophysical Journal, 898:54.
    Teuben, P., Pound, M., Mundy, L., Rauch, K., Friedel, D., Looney, L., Xu, L., and Kern, J. (2015).Admit: The alma data mining toolkit.Astronomical Data Analysis Software and Systems XXIV(ADASS XXIV), 495:305.
    Tobin, J. J., Looney, L. W., Li, Z.-Y., Chandler, C. J., Dunham, M. M., Segura-Cox, D., Sadavoy,S. I., Melis, C., Harris, R. J., Kratter, K., and Perez, L. (2016). The vla nascent disk andmultiplicity survey of perseus protostars (vandam). ii. multiplicity of protostars in the perseusmolecular cloud.The Astrophysical Journal, 818:73.
    Wilson, T. L. and Rood, R. (1994). Abundances in the interstellar medium.Annual Review ofAstronomy and Astrophysics, 32:191.
    Wolfire, M. G. and Cassinelli, J. P. (1987). Conditions for the formation of massive stars.Astro-physical Journal, 319:850.
    Yorke, H. W. and Sonnhalter, C. (2002). On the formation of massive stars.The AstrophysicalJournal, 569:846.
    Zhang, Y., Tan, J. C., Tanaka, K. E. I., De Buizer, J. M., Liu, M., Beltrán, M. T., Kratter, K.,Mardones, D., and Garay, G. (2019). Dynamics of a massive binary at birth.Nature Astronomy,3:517.
    Zinnecker, H. and Yorke, H. W. (2007). Toward understanding massive star formation.AnnualReview of Astronomy Astrophysics, 45:481.

    QR CODE