研究生: |
王閔世 |
---|---|
論文名稱: |
胃幽門螺旋桿菌染色體分離蛋白Soj的分子結構之研究 Structural Study of the Chromosome Segregation Protein Soj from Helicobacter pylori |
指導教授: | 孫玉珠 |
口試委員: |
孫玉珠
蕭傳鐙 殷献生 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 胃幽門螺旋桿菌 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胃幽門螺旋桿菌是人體胃部的病源菌,其感染胃部黏膜層將會導致慢性胃炎、消化性潰傷、胃癌和粘膜相關性淋巴瘤。胃幽門螺旋桿菌26695編號的hp1139基因可轉譯出染色體分配系統中的動源蛋白HpSoj和DNA結合蛋白HpSpo0J。在之前研究中,HpSoj 經由凝膠遷移具有與DNA的結合能力、孔雀石綠ATP活性分析知水解活性與HpSpo0J作用的能力。這非常值得在蛋白質晶體學上從結構的角度來探討HpSoj如何與DNA結合和如何與HpSpo0J作用。本研究成功獲得 HpSoj-ATP複合物晶體,並經由X-ray晶體繞射達到1.9 Å的解析度,利用分子置換的方式解析出 HpSoj-ATP複合物晶體結構,其空間群屬於P212121,晶格參數為a = 48.1 Å, b = 93.3 Å, c = 110.9 Å。不對稱單元中含有兩個分子,其為二聚體之關係。HpSoj的結構為非典型的Rossmann 折疊,其由七個β摺板與兩對α螺旋組連結構成。根據蛋白質序列比對與HpSoj的結構以及先前之參考文獻指出,Soj透過必須性高序列保守度的正電荷氨基酸arginine對DNA的負電荷磷酸骨架有非專一性之結合能力。於HpSoj一級結構中,相對應之位置的氨基酸 Q194、F206、K227和K230並不具有序列性保守度,由於Q194與K230位置的arginine已被證實對於Soj與DNA之結合最為重要,推測提出HpSoj利用位在其二聚體結合面附近的lysine與DNA作用的假設。
1. Goodwin, C. S. & Armstrong, J. A. (1990). Microbiological aspects of Helicobacter pylori (Campylobacter pylori). Eur J Clin Microbiol Infect Dis 9, 1-13.
2. Marshall, B. J. & Warren, J. R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-5.
3. Goodwin, C. S., McCulloch, R. K., Armstrong, J. A. & Wee, S. H. (1985). Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa. J Med Microbiol 19, 257-67.
4. Dunn, B. E., Cohen, H. & Blaser, M. J. (1997). Helicobacter pylori. Clin Microbiol Rev 10, 720-41.
5. Kuck, D., Kolmerer, B., Iking-Konert, C., Krammer, P. H., Stremmel, W. & Rudi, J. (2001). Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the human gastric epithelial cell line AGS. Infect Immun 69, 5080-7.
6. Blaser, M. J., Perez-Perez, G. I., Kleanthous, H., Cover, T. L., Peek, R. M., Chyou, P. H., Stemmermann, G. N. & Nomura, A. (1995). Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55, 2111-5.
7. Shibayama, K., Kamachi, K., Nagata, N., Yagi, T., Nada, T., Doi, Y., Shibata, N., Yokoyama, K., Yamane, K., Kato, H., Iinuma, Y. & Arakawa, Y. (2003). A novel apoptosis-inducing protein from Helicobacter pylori. Mol Microbiol 47, 443-51.
8. Danesh, J. (1999). Helicobacter pylori and gastric cancer: time for mega-trials? Br J Cancer 80, 927-9.
9. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M. & Venter, J. C. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-47.
10. Bult, H. (1996). Nitric oxide and atherosclerosis: possible implications for therapy. Mol Med Today 2, 510-8.
11. Hatakeyama, M. (2009). Helicobacter pylori and gastric carcinogenesis. J Gastroenterol 44, 239-48.
12. Fraser, C. M., Gocayne, J. D., White, O., Adams, M. D., Clayton, R. A., Fleischmann, R. D., Bult, C. J., Kerlavage, A. R., Sutton, G., Kelley, J. M., Fritchman, R. D., Weidman, J. F., Small, K. V., Sandusky, M., Fuhrmann, J., Nguyen, D., Utterback, T. R., Saudek, D. M., Phillips, C. A., Merrick, J. M., Tomb, J. F., Dougherty, B. A., Bott, K. F., Hu, P. C., Lucier, T. S., Peterson, S. N., Smith, H. O., Hutchison, C. A., 3rd & Venter, J. C. (1995). The minimal gene complement of Mycoplasma genitalium. Science 270, 397-403.
13. Fleischmann, T. (1995). [Patients with stomas among the severely handicapped in our society]. Krankenpfl J 33, 142-5.
14. Ebersbach, G. & Gerdes, K. (2005). Plasmid segregation mechanisms. Annu Rev Genet 39, 453-79.
15. Funnell, B. E. (2005). Partition-mediated plasmid pairing. Plasmid 53, 119-25.
16. Reyes-Lamothe, R., Nicolas, E. & Sherratt, D. J. (2012). Chromosome replication and segregation in bacteria. Annu Rev Genet 46, 121-43.
17. Jun, S. & Wright, A. (2010). Entropy as the driver of chromosome segregation. Nat Rev Microbiol 8, 600-7.
18. Gerdes, K., Moller-Jensen, J. & Bugge Jensen, R. (2000). Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37, 455-66.
19. Schumacher, M. A. (2008). Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. Biochem J 412, 1-18.
20. Leipe, D. D., Wolf, Y. I., Koonin, E. V. & Aravind, L. (2002). Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317, 41-72.
21. Scholefield, G., Whiting, R., Errington, J. & Murray, H. (2011). Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. Mol Microbiol 79, 1089-100.
22. Leonard, T. A., Butler, P. J. & Lowe, J. (2005). Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch. EMBO J 24, 270-82.
23. Lee, M. J., Liu, C. H., Wang, S. Y., Huang, C. T. & Huang, H. (2006). Characterization of the Soj/Spo0J chromosome segregation proteins and identification of putative parS sequences in Helicobacter pylori. Biochem Biophys Res Commun 342, 744-50.
24. Quisel, J. D., Lin, D. C. & Grossman, A. D. (1999). Control of development by altered localization of a transcription factor in B. subtilis. Mol Cell 4, 665-72.
25. Quisel, J. D. & Grossman, A. D. (2000). Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J Bacteriol 182, 3446-51.
26. Ireton, K., Gunther, N. W. t. & Grossman, A. D. (1994). spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J Bacteriol 176, 5320-9.
27. Lin, D. C. & Grossman, A. D. (1998). Identification and characterization of a bacterial chromosome partitioning site. Cell 92, 675-85.
28. Gruber, S. & Errington, J. (2009). Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685-96.
29. Otwinowski, Z. & Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. In Methods in Enzymology (Charles W. Carter, Jr., ed.), Vol. Volume 276, pp. 307-326. Academic Press.
30. Matthews, B. W. (1968). Solvent content of protein crystals. Journal of Molecular Biology 33, 491-497.
31. Tong, L., Qian, C., Davidson, W., Massariol, M. J., Bonneau, P. R., Cordingley, M. G. & Lagace, L. (1997). Experiences from the structure determination of human cytomegalovirus protease. Acta Crystallogr D Biol Crystallogr 53, 682-90.
32. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674.
33. Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W., Mustyakimov, M., Terwilliger, T. C., Urzhumtsev, A., Zwart, P. H. & Adams, P. D. (2012). Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68, 352-67.
34. Emsley, P. & Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-32.
35. Kozakov, D., Hall, D. R., Beglov, D., Brenke, R., Comeau, S. R., Shen, Y., Li, K., Zheng, J., Vakili, P., Paschalidis, I. & Vajda, S. (2010). Achieving reliability and high accuracy in automated protein docking: ClusPro, PIPER, SDU, and stability analysis in CAPRI rounds 13-19. Proteins 78, 3124-30.
36. Kozakov, D., Brenke, R., Comeau, S. R. & Vajda, S. (2006). PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65, 392-406.
37. Kadoya, R., Baek, J. H., Sarker, A. & Chattoraj, D. K. (2011). Participation of chromosome segregation protein ParAI of Vibrio cholerae in chromosome replication. J Bacteriol 193, 1504-14.
38. Lasocki, K., Bartosik, A. A., Mierzejewska, J., Thomas, C. M. & Jagura-Burdzy, G. (2007). Deletion of the parA (soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. J Bacteriol 189, 5762-72.
39. Lewis, R. A., Bignell, C. R., Zeng, W., Jones, A. C. & Thomas, C. M. (2002). Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth. Microbiology 148, 537-48.
40. Cordell, S. C. & Lowe, J. (2001). Crystal structure of the bacterial cell division regulator MinD. FEBS Lett 492, 160-5.
41. Jeoung, J. H., Giese, T., Grunwald, M. & Dobbek, H. (2010). Crystal structure of the ATP-dependent maturation factor of Ni,Fe-containing carbon monoxide dehydrogenases. J Mol Biol 396, 1165-79.
42. Strop, P., Takahara, P. M., Chiu, H., Angove, H. C., Burgess, B. K. & Rees, D. C. (2001). Crystal structure of the all-ferrous [4Fe-4S]0 form of the nitrogenase iron protein from Azotobacter vinelandii. Biochemistry 40, 651-6.
43. Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-80.
44. Hester, C. M. & Lutkenhaus, J. (2007). Soj (ParA) DNA binding is mediated by conserved arginines and is essential for plasmid segregation. Proc Natl Acad Sci U S A 104, 20326-31.
45. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson, K. S. (2011). Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235-42.
46. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. & Zwart, P. H. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-21.
47. R. A. Laskowski, M. W. M., D. S. Moss and J. M. Thornton. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291
48. Krissinel, E. & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774-97.
49. Sasaki, D., Watanabe, S., Matsumi, R., Shoji, T., Yasukochi, A., Tagashira, K., Fukuda, W., Kanai, T., Atomi, H., Imanaka, T. & Miki, K. (2013). Identification and structure of a novel archaeal HypB for [NiFe] hydrogenase maturation. J Mol Biol 425, 1627-40.
50. Schumacher, M. A., Ye, Q., Barge, M. T., Zampini, M., Barilla, D. & Hayes, F. (2012). Structural mechanism of ATP-induced polymerization of the partition factor ParF: implications for DNA segregation. J Biol Chem 287, 26146-54.
51. Dunham, T. D., Xu, W., Funnell, B. E. & Schumacher, M. A. (2009). Structural basis for ADP-mediated transcriptional regulation by P1 and P7 ParA. EMBO J 28, 1792-802.
52. McLeod, B. N. & Spiegelman, G. B. (2005). Soj antagonizes Spo0A activation of transcription in Bacillus subtilis. J Bacteriol 187, 2532-6.
53. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-12.
54. Horowitz, B., Sharf, R., Avital-Shacham, M., Pechkovsky, A. & Kleinberger, T. (2013). Structure- and modeling-based identification of the adenovirus E4orf4 binding site in the protein phosphatase 2A B55alpha subunit. J Biol Chem 288, 13718-27.
55. Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. (2010). ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38, W529-33.
56. Holm, L. & Rosenstrom, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res 38, W545-9.
57. Wu, W., Park, K. T., Holyoak, T. & Lutkenhaus, J. (2011). Determination of the structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC. Mol Microbiol 79, 1515-28.
58. Tezcan, F. A., Kaiser, J. T., Mustafi, D., Walton, M. Y., Howard, J. B. & Rees, D. C. (2005). Nitrogenase complexes: multiple docking sites for a nucleotide switch protein. Science 309, 1377-80.
59. Sandalova, T., Schneider, G., Kack, H. & Lindqvist, Y. (1999). Structure of dethiobiotin synthetase at 0.97 A resolution. Acta Crystallogr D Biol Crystallogr 55, 610-24.
60. Porebski, P. J., Klimecka, M., Chruszcz, M., Nicholls, R. A., Murzyn, K., Cuff, M. E., Xu, X., Cymborowski, M., Murshudov, G. N., Savchenko, A., Edwards, A. & Minor, W. (2012). Structural characterization of Helicobacter pylori dethiobiotin synthetase reveals differences between family members. FEBS J 279, 1093-105.
61. Zhou, T., Radaev, S., Rosen, B. P. & Gatti, D. L. (2000). Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. EMBO J 19, 4838-45.
62. Murray, H. & Errington, J. (2008). Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 135, 74-84.